Skip to main content
Log in

I.C.E.: a transportable atomic inertial sensor for test in microgravity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present the construction of an atom interferometer for inertial sensing in microgravity, as part of the I.C.E. (Interférométrie Cohérente pour l’Espace) collaboration. On-board laser systems have been developed based on fibre-optic components, which are insensitive to mechanical vibrations and acoustic noise, have sub-MHz line width, and remain frequency stabilised for weeks at a time. A compact, transportable vacuum system has been built, and used for laser cooling and magneto-optical trapping. We will use a mixture of quantum degenerate gases, bosonic 87Rb and fermionic 40K, in order to find the optimal conditions for precision and sensitivity of inertial measurements. Microgravity will be realised in parabolic flights lasting up to 20 s in an Airbus. We investigate the experimental limits of our apparatus, and show that the factors limiting the sensitivity of a long-interrogation-time atomic inertial sensor are the phase noise in reference-frequency generation for Raman-pulse atomic beam splitters and acceleration fluctuations during free fall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P.R. Bermann (eds.), Atom Interferometry (Academic, Boston MA, 1997)

    Google Scholar 

  2. T. Sleator, P.R. Berman, B. Dubetsky, arXiv: physics/9905047 (1999)

  3. K. Bongs, K. Sengstock, Rep. Prog. Phys. 67, 907 (2004)

    Article  ADS  Google Scholar 

  4. Y. Le Coq, J.A. Retter, S. Richard, A. Aspect, P. Bouyer, e-print cond-mat/0501520 (2005)

  5. S. Gupta, Z. Hadzibabic, M.W. Zwierlein, C.A. Stan, K. Dieckmann, C.H. Schunck, E.G.M. van Kempen, B.J. Verhaar, W. Ketterle, Science 300, 1723 (2003)

    Article  ADS  Google Scholar 

  6. M.W. Zwierlein, Z. Hadzibabic, S. Gupta, W. Ketterle, Phys. Rev. Lett. 91, 250404 (2004)

    Article  Google Scholar 

  7. C.A. Regal, M. Greiner, D.S. Jin, Phys. Rev. Lett. 92, 040403 (2004)

    Article  ADS  Google Scholar 

  8. G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati, Phys. Rev. Lett. 89, 053202 (2002)

    Article  ADS  Google Scholar 

  9. F. Ferlaino, C. D’Errico, G. Roati, M. Zaccanti, M. Inguscio, G. Modugno, Phys. Rev. A 73, 040702 (2006)

    Article  ADS  Google Scholar 

  10. A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Science 301, 1513 (2003)

    Article  ADS  Google Scholar 

  11. H. Schmaljohann, M. Erhard, J. Kronjäger, K. Sengstock, K. Bongs, Appl. Phys. B 79, 1001 (2004)

    Article  ADS  Google Scholar 

  12. Natural-abundance dispensers are available from SAES Getters. We are interested in the isotopes 87Rb and 40K, which are respectively 28% and 0.012% naturally abundant. We will be investing in isotopically enriched 40K (about 5%) dispensers in the near future

  13. R.A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, P. Bouyer, Rev. Sci. Instrum. 77, 033105 (2006)

    Article  ADS  Google Scholar 

  14. A.S. Arnold, J.S. Wilson, M.G. Boshier, Rev. Sci. Instrum. 69, 1236 (1998)

    Article  ADS  Google Scholar 

  15. C.E. Wieman, L. Hollberg, Rev. Sci. Instrum. 62, 1 (1991)

    Article  ADS  Google Scholar 

  16. V. Mahal, A. Arie, M.A. Arbore, M.M. Fejer, Opt. Lett. 21, 1217 (1996)

    Article  ADS  Google Scholar 

  17. R.J. Thompson, M. Tu, D.C. Aveline, N. Lundblad, L. Maleki, Opt. Express 11, 1709 (2003)

    Article  ADS  Google Scholar 

  18. J. Dingjan, B. Darquié, J. Beugnon, M.P.A. Jones, S. Bergamini, G. Messin, A. Browaeys, P. Grangier, Appl. Phys. B 82, 47 (2006)

    Article  ADS  Google Scholar 

  19. K. Dieckmann, R.J.C. Spreeuw, M. Wiedemüller, J.T.M. Walraven, Phys. Rev. A 58, 3891 (1998)

    Article  ADS  Google Scholar 

  20. C. Ospelkaus, S. Ospelkaus, K. Sengstock, K. Bongs, Phys. Rev. Lett. 96, 020401 (2006)

    Article  ADS  Google Scholar 

  21. Our current measurements suggest E8–E9 atoms in the cloud. Loading to nearly the maximum atom number takes less than 5 s

  22. T. Kinoshita, T.R. Wenger, D.S. Weiss, Phys. Rev. A 71, 01162(R) (2005)

    Article  Google Scholar 

  23. M. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  24. C.J. Bordé, in Laser Spectroscopy X, ed. by M. Ducloy, E. Giacobino, G. Camy (World Scientific, Singapore 1991), p. 239

    Google Scholar 

  25. C. Antoine, C.J. Bordé, J. Opt. B 5, 199 (2003)

    ADS  Google Scholar 

  26. G.J. Dick, Local oscillator induced instabilities. In Proc. Nineteenth Annual Precise Time and Time Interval Applications Planning Meet., 1987, pp. 133–147

  27. P. Cheinet, B. Canuel, F. Pereira Dos Santos, A. Gauguet, F. Leduc, A. Landragin, e-print physics/0510197 (2005)

  28. P. Cheinet, F. Pereira Dos Santos, T. Petelski, J. Le Gouët, J. Kim, K.T. Therkildsen, A. Clairon, A. Landragin, e-print physics/0510261 (2005)

  29. A. Mann, C. Sheng, A. Luiten, IEEE Trans. Instrum. Meas. 50, 519 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R.A. Nyman.

Additional information

PACS

06.30.Gv; 39.20.+q; 42.60.By

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nyman, R., Varoquaux, G., Lienhart, F. et al. I.C.E.: a transportable atomic inertial sensor for test in microgravity. Appl. Phys. B 84, 673–681 (2006). https://doi.org/10.1007/s00340-006-2395-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2395-7

Keywords

Navigation