Skip to main content
Log in

Interpretation of near-field images of semiconductor nanostructures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We discuss near-field wave function imaging, introducing a model for high spatial resolution photoluminescence imaging of semiconductor nanostructures. The model is applied to optically bright and dark exciton and biexciton states in different quantum dot systems, explicitly taking the experimental imaging configuration into account. Our results show that direct imaging of the exciton density is only possible in collection mode experiments with nonresonant excitation in the high-resolution limit. For other geometries and for biexcitonic states, the images reflect not only the size and shape of the wave function and the spatial resolution of the near-field probe but also in particular the inherent optical nonlinearity of the imaging process. Different examples for the effects of this nonlinearity are discussed, providing new insight into the interpretation of existing experiments, and guidelines for designing novel experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.F. Hess, E. Betzig, T.D. Harris, L.N. Pfeiffer, K.W. West, Science 264, 1740 (1994)

    Article  ADS  Google Scholar 

  2. J. Levy, V. Nikitin, J.M. Kikkawa, A. Cohen, N. Samarth, R. Garcia, D.D. Awschalom, Phys. Rev. Lett. 76, 1948 (1996)

    Article  ADS  Google Scholar 

  3. A. Richter, G. Behme, M. Süptitz, C. Lienau, T. Elsaesser, M. Ramsteiner, R. Nötzel, K.H. Ploog, Phys. Rev. Lett. 79, 2145 (1997)

    Article  ADS  Google Scholar 

  4. G. Eytan, Y. Yayon, M. Rappaport, H. Shtrikman, I. Bar-Joseph, Phys. Rev. Lett. 81, 1666 (1998)

    Article  ADS  Google Scholar 

  5. Y. Toda, O. Moriwaki, M. Nishioka, Y. Arakawa, Phys. Rev. Lett. 82, 4114 (1999)

    Article  ADS  Google Scholar 

  6. A.M. Mintairov, T.H. Kosel, J.L. Merz, P.A. Blagnov, A.S. Vlasov, V.M. Ustinov, R.E. Cook, Phys. Rev. Lett. 87, 277401 (2001)

    Article  Google Scholar 

  7. F. Intonti, V. Emiliani, C. Lienau, T. Elsaesser, V. Savona, E. Runge, R. Zimmermann, R. Nötzel, K.H. Ploog, Phys. Rev. Lett. 87, 076801 (2001)

    Article  ADS  Google Scholar 

  8. J.R. Guest, T.H. Stievater, G. Chen, E.A. Tabak, B.G. Orr, D.G. Steel, D. Gammon, D.S. Katzer, Science 293, 2224 (2001)

    Article  ADS  Google Scholar 

  9. T. Guenther, C. Lienau, T. Elsaesser, M. Glanemann, V.M. Axt, T. Kuhn, S. Eshlaghi, A.D. Wieck, Phys. Rev. Lett. 89, 057401 (2002)

    Article  ADS  Google Scholar 

  10. Y. Yayon, A. Esser, M. Rappaport, V. Umansky, H. Shtrikman, I. Bar-Joseph, Phys. Rev. Lett. 89, 157402 (2002)

    Article  ADS  Google Scholar 

  11. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, S. Nair, T. Takagahara, Phys. Rev. Lett. 91, 177401 (2003)

    Article  ADS  Google Scholar 

  12. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Phys. Rev. Lett. 92, 157401 (2004)

    Article  ADS  Google Scholar 

  13. T. Unold, K. Mueller, C. Lienau, T. Elsaesser, A.D. Wieck, Phys. Rev. Lett. 94, 137404 (2005)

    Article  ADS  Google Scholar 

  14. A. Feltrin, F. Michelini, J.L. Staehli, B. Deveaud, V. Savona, J. Toquant, X.L. Wang, M. Ogura, Phys. Rev. Lett. 95, 177404 (2005)

    Article  ADS  Google Scholar 

  15. T.H. Stievater, X. Li, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Phys. Rev. Lett. 87, 133603 (2001)

    Article  ADS  Google Scholar 

  16. H. Kamada, H. Gotoh, J. Temmyo, T. Takagahara, H. Ando, Phys. Rev. Lett. 87, 246401 (2001)

    Article  ADS  Google Scholar 

  17. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, G. Abstreiter, Nature 418, 612 (2002)

    Article  ADS  Google Scholar 

  18. X.Q. Li, Y.W. Wu, D. Steel, D. Gammon, T.H. Stievater, D.S. Katzer, D. Park, C. Piermarocchi, L.J. Sham, Science 301, 809 (2003)

    Article  ADS  Google Scholar 

  19. B. Patton, U. Woggon, W. Langbein, Phys. Rev. Lett. 95, 266401 (2005)

    Article  ADS  Google Scholar 

  20. O. Mauritz, G. Goldoni, F. Rossi, E. Molinari, Phys. Rev. Lett. 82, 847 (1999)

    Article  ADS  Google Scholar 

  21. C. Simserides, U. Hohenester, G. Goldoni, E. Molinari, Phys. Rev. B 62, 13657 (2000)

    Article  ADS  Google Scholar 

  22. G.W. Bryant, Appl. Phys. Lett. 72, 768 (1998)

    Article  ADS  Google Scholar 

  23. G. Pistone, S. Savasta, O. Di Stefano, R. Girlanda, Phys. Rev. B 67, 153305 (2003)

    Article  ADS  Google Scholar 

  24. G. Pistone, S. Savasta, O. Di Stefano, R. Girlanda, Appl. Phys. Lett. 84, 2971 (2004)

    Article  ADS  Google Scholar 

  25. U. Hohenester, G. Goldoni, E. Molinari, Phys. Rev. Lett. 95, 216802 (2005)

    Article  ADS  Google Scholar 

  26. A. Hartschuh, E.J. Sanchez, X.S. Xie, L. Novotny, Phys. Rev. Lett. 90, 095503 (2003)

    Article  ADS  Google Scholar 

  27. K. Matsuda, T. Saiki, S. Nomura, M. Mihara, Y. Aoyagi, Appl. Phys. Lett. 81, 2291 (2002)

    Article  ADS  Google Scholar 

  28. U. Hohenester, G. Goldoni, E. Molinari, Appl. Phys. Lett. 84, 3963 (2004)

    Article  ADS  Google Scholar 

  29. E. Runge, C. Lienau, Phys. Rev. B 71, 035347 (2005)

    Article  ADS  Google Scholar 

  30. H. Haug, S.W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, Singapore, 1990)

    Book  Google Scholar 

  31. L.C. Andreani, F. Bassani, F. Tassone, In: Optics of Excitons in Confined Systems, ed. by A. D’Andrea, R. Del Sole, R. Girlanda, A. Quattropani, IOP Conference Series Number 123 (IOP Press, Bristol, 1992), p. 25

  32. R. Zimmermann, E. Runge, V. Savona, In: Quantum Coherence, Correlation and Decoherence in Semiconductor Nanostructures, ed. by T. Takagahara (Elsevier Science, Oxford, 2003), p. 89–165

  33. E. Runge, Solid State Physics, Vol. 57, ed. by H. Ehrenreich, F. Spaepen (Academic Press, San Diego, 2002) p. 149–305 and references therein

  34. R. Zimmermann, F. Große, E. Runge, Pure Appl. Chem. 69, 1179 (1997)

    Article  Google Scholar 

  35. A. Siarkos, E. Runge, R. Zimmermann, Phys. Rev. B 61, 10854 (2000)

    Article  ADS  Google Scholar 

  36. A. Siarkos, E. Runge, Phys. Rev. B 61, 16854 (2000)

    Article  ADS  Google Scholar 

  37. V. Savona, In: Electron and Photon Confinement in Semiconductor Nanostructures, ed. by B. Deveaud, A. Quattropani, P. Schwendimann (IOP Press, Amsterdam, 2003) p. 219

  38. O. Di Stefano, S. Savasta, G. Pistone, G. Martino, R. Girlanda, Phys. Rev. B 68, 165329 (2003)

    Article  ADS  Google Scholar 

  39. G. von Freymann, E. Kurtz, C. Klingshirn, M. Wegener, Appl. Phys. Lett. 77, 394 (2000)

    Article  ADS  Google Scholar 

  40. J.R. Guest, T.H. Stievater, D.G. Steel, D. Gammon, D.S. Katzer, D. Park, In: Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Soc. America, Washington, DC, 2000) p. 6

  41. I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988)

    Google Scholar 

  42. D. Gammon, E.S. Snow, B.V. Shanabrook, D.S. Katzer, D. Park, Phys. Rev. Lett. 76, 3005 (1996)

    Article  ADS  Google Scholar 

  43. B. Hanewinkel, A. Knorr, P. Thomas, S.W. Koch, Phys. Rev. B 55, 13715 (1997)

    Article  ADS  Google Scholar 

  44. R.D. Grober, T. Rutherford, T.D. Harris, Appl. Opt. 35, 3488 (1996)

    Article  ADS  Google Scholar 

  45. Y. Leviatan, J. Appl. Phys. 60, 1577 (1986)

    Article  ADS  Google Scholar 

  46. C.J. Bouwkamp, Philips Res. Rep. 5, 321 (1950)

    Google Scholar 

  47. H.A. Bethe, Phys. Rev. 66, 163 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  48. O. Heller, P. Lelong, G. Bastard, Phys. Rev. B 56, 4702 (1997)

    Article  ADS  Google Scholar 

  49. C. Riva, F.M. Peeters, K. Varga, V.A. Schweigert, Phys. Stat. Solidi B 234, 50 (2002)

    Article  ADS  Google Scholar 

  50. K. Brunner, G. Abstreiter, G. Böhm, G. Tränkle, G. Weimann, Phys. Rev. Lett. 73, 1138 (1994)

    Article  ADS  Google Scholar 

  51. D. Bimberg, M. Grundmann, N.N. Ledentsov, Quantum Dot Heterostructures (John Wiley, New York, 1998)

    Google Scholar 

  52. L. Banyai, Phys. Rev. B 39, 8022 (1989)

    Article  ADS  Google Scholar 

  53. F. Yang, M. Wilkinson, E.J. Austin, K.P. O’Donnell, 70, 323 (1993)

  54. F. Yang, M. Wilkinson, E.J. Austin, K.P. O’Donnell, Phys. Rev. Lett. 72, 1945 (1994)

    Article  ADS  Google Scholar 

  55. H. Nickolaus, H.-J. Wünsche, F. Henneberger, Phys. Rev. Lett. 81, 2586 (1998)

    Article  ADS  Google Scholar 

  56. W. Langbein, R. Zimmermann, E. Runge, J.M. Hvam, Phys. Stat. Solidi B 221, 349 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Runge.

Additional information

PACS

78.67-n; 71.35.-y; 07.79.Fc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Runge, E., Lienau, C. Interpretation of near-field images of semiconductor nanostructures. Appl. Phys. B 84, 103–110 (2006). https://doi.org/10.1007/s00340-006-2215-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2215-0

Navigation