Skip to main content

Advertisement

Log in

Random on-site interactions versus random potential in ultra cold atoms in optical lattices

Applied Physics B Aims and scope Submit manuscript

Abstract

We consider the physics of lattice bosons in the presence of either disordered on-site chemical potential or disordered on-site interparticle interactions. By means of analytical results using strong-coupling expansion, and numerical results based on quantum Monte Carlo calculations, we show that important qualitative changes in the zero temperature phase diagram are observed when comparing both cases. Although for both types of disorder superfluid, Mott-insulator and Bose-glass phases may be found, we show that in the case of random interactions the Mott-insulating regions shrink and eventually vanish for any finite disorder strength beyond a sufficiently large filling factor. Furthermore, at low values of the chemical potential both the superfluid and Mott insulator are stable towards the formation of a Bose-glass, leading to a possibly non-trivial tricritical point. We discuss possible experimental realizations of both types of disorder in the context of ultra cold atomic gases in optical lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Phillips WD (1998) Rev. Mod. Phys. 70:721

    Article  ADS  Google Scholar 

  2. Anderson MH, Ensher JR, Matthews MR, Wieman CE, Cornell EA (1995) Science 269:198

    Article  ADS  Google Scholar 

  3. DeMarco B, Jin DS (1999) Science 285:1703

    Article  PubMed  Google Scholar 

  4. Meystre P (2001) Atom Optics. Springer, New York

    Google Scholar 

  5. Raman C, Köhl M, Onofrio R, Durfee DS, Kuklewicz CE, Hadzibabic Z, Ketterle W (1999) Phys. Rev. Lett. 83:2502

    Article  ADS  Google Scholar 

  6. Moragò OM, Hopkins SA, Arlt J, Hodby E, Hechenblaikner G, Foot CJ (2000) Phys. Rev. Lett. 84:2056

    Article  PubMed  ADS  Google Scholar 

  7. Matthews MR, Anderson BP, Haljan PC, Hall DS, Wieman CE, Cornell EA (1999) Phys. Rev. Lett. 83:2498

    Article  ADS  Google Scholar 

  8. Madison KW, Chevy F, Wohlleben W, Dalibard J (2000) Phys. Rev. Lett. 84:806

    Article  PubMed  ADS  Google Scholar 

  9. Mewes MO, Andrews MR, Kurn DM, Durfee DS, Townsend CG, Ketterle W (1997) Phys. Rev. Lett. 78:582

    Article  ADS  Google Scholar 

  10. Andrews MR, Townsend CG, Miesner H-J, Durfee DS, Kurn DM, Ketterle W (1997) Science 275:637

    Article  PubMed  Google Scholar 

  11. Stenger J, Inouye S, Chikkatur AP, Stamper-Kurn DM, Pritchard DE, Ketterle W (1999) Phys. Rev. Lett. 82:4569

    Article  ADS  Google Scholar 

  12. Hagley EW, Deng L, Kozuma M, Trippenbach M, Band YB, Edwards M, Doery M, Julienne PS, Helmerson K, Rolston SL, Phillips WD (1999) Phys. Rev. Lett. 83:3112

    Article  ADS  Google Scholar 

  13. Bloch I, Hänsch TW, Esslinger T (2000) Nature 403:166

    Article  PubMed  ADS  Google Scholar 

  14. Regal CA, Greiner M, Jin DS (2004) Phys. Rev. Lett. 92:040403

    Article  PubMed  ADS  Google Scholar 

  15. Zwierlein MW, Stan CA, Schunck CH, Raupach SMF, Kerman AJ, Ketterle W (2004) Phys. Rev. Lett. 92:120403

    Article  PubMed  ADS  Google Scholar 

  16. Moritz H, Stöferle T, Köhl M, Esslinger T (2003) Phys. Rev. Lett. 91:250402

    Article  PubMed  ADS  Google Scholar 

  17. Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T (2004) Phys. Rev. Lett. 92:130403

    Article  PubMed  ADS  Google Scholar 

  18. Laburthe Tolra B, O’Hara KM, Huckans JH, Phillips WD, Rolston SL, Porto JV (2004) Phys. Rev. Lett. 92:190401

    Article  PubMed  Google Scholar 

  19. Paredes B, Widera A, Murg V, Mandel O, Fölling S, Cirac I, Shlyapnikov GV, Hänsch TW, Bloch I (2004) Nature 429:277

    Article  PubMed  ADS  Google Scholar 

  20. Kinoshita T, Wenger T, Weiss DS (2004) Science 305:1125

    Article  PubMed  ADS  Google Scholar 

  21. Wilkin NK, Gunn JMF (2000) Phys. Rev. Lett. 84:6

    Article  PubMed  ADS  Google Scholar 

  22. Schweikhard V, Coddington I, Engels P, Mogendorff VP, Cornell EA (2004) Phys. Rev. Lett. 92:040404

    Article  PubMed  ADS  Google Scholar 

  23. Dahan MB, Peik E, Reichel J, Castin Y, Salomon C (1996) Phys. Rev. Lett. 76:4508

    Article  PubMed  ADS  Google Scholar 

  24. Wilkinson SR, Bharucha CF, Madison KW, Niu Q, Raizen MG (1996) Phys. Rev. Lett. 76:4512

    Article  PubMed  ADS  Google Scholar 

  25. Morsch O, Müller JH, Cristiani M, Ciampini D, Arimondo E (2001) Phys. Rev. Lett. 87:140402

    Article  PubMed  ADS  Google Scholar 

  26. Anderson BP, Kasevich M (1998) Science 282:1686

    Article  PubMed  ADS  Google Scholar 

  27. Cataliotti FS, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A, Inguscio M (2001) Science 293:843

    Article  PubMed  ADS  Google Scholar 

  28. Jaksch D, Bruder C, Cirac JI, Gardiner CW, Zoller P (1998) Phys. Rev. Lett. 81:3108

    Article  ADS  Google Scholar 

  29. Greiner M, Mandel O, Esslinger T, Hänsch TW, Bloch I (2002) Nature 415:39

    Article  PubMed  ADS  Google Scholar 

  30. Stöferle T, Moritz H, Schori C, Köhl M, Esslinger T (2004) Phys. Rev. Lett. 92:130403

    Article  PubMed  ADS  Google Scholar 

  31. Santos L, Baranov MA, Cirac JI, Everts H-U, Fehrmann H, Lewenstein M (2004) Phys. Rev. Lett. 93:030601

    Article  PubMed  ADS  Google Scholar 

  32. Wessel S, Troyer M (2005) Phys. Rev. Lett. 95:127205

    Article  PubMed  ADS  Google Scholar 

  33. Lye JE, Fallani L, Modugno M, Wiersma DS, Fort C, Inguscio M (2005) Phys. Rev. Lett. 95:070401

    Article  PubMed  ADS  Google Scholar 

  34. Clément D, Varón AF, Hugbart M, Retter JA, Bouyer P, Sanchez-Palencia L, Gangardt DM, Shlyapnikov GV, Aspect A (2005) Phys. Rev. Lett. 95:170409

    Article  ADS  Google Scholar 

  35. Fort C, Fallani L, Guarrera V, Lye JE, Modugno M, Wiersma DS, Inguscio M (2005) Phys. Rev. Lett. 95:170410

    Article  ADS  Google Scholar 

  36. Schulte T, Drenkelforth S, Kruse J, Ertmer W, Arlt J, Sacha K, Zakrzewski J, Lewenstein M (2005) Phys. Rev. Lett. 95:170411

    Article  ADS  Google Scholar 

  37. Anderson PW (1958) Phys. Rev. 109:5

    Google Scholar 

  38. Damski B et al. (2003) Phys. Rev. Lett. 91:080403

    Article  PubMed  ADS  Google Scholar 

  39. Gavish U, Casti Y (2005) Phys. Rev. Lett. 95:020401

    Article  PubMed  ADS  Google Scholar 

  40. B. Paredes, C. Tejedor, J.I. Cirac, cond-mat/0306497

  41. Sanpera A, Kantian A, Sanchez-Palencia L, Zakrzewski J, Lewenstein M (2004) Phys. Rev. Lett. 93:040401

    Article  PubMed  ADS  Google Scholar 

  42. V. Ahufinger, L. Sanchez-Palencia, A. Kantian, A. Sanpera, M. Lewenstein, cond-mat/0508402

  43. Tiesinga E, Verhaar BJ, Stoof HTC (1993) Phys. Rev. A 47:4114

    Article  PubMed  ADS  Google Scholar 

  44. Inouye S, Andrews MR, Stenger J, Miesner H-J, Stamper-Kurn DM, Ketterle W (1998) Nature (London) 392:151

    Article  ADS  Google Scholar 

  45. Gimperlein H, Wessel S, Schmiedmayer J, Santos L (2005) Phys. Rev. Lett. 95:170401

    Article  ADS  Google Scholar 

  46. Deutscher D, Imry Y, Gunther L (1974) Phys. Rev. B 10:4598

    Article  ADS  Google Scholar 

  47. Fisher MPA, Weichman PB, Grinstein G, Fisher DS (1989) Phys. Rev. B 40:546

    Article  ADS  Google Scholar 

  48. Prokof’ev N, Svistunov B (1998) Phys. Rev. Lett. 80:4355

    Article  ADS  Google Scholar 

  49. Rapsch S, Schollwöck U, Zwerger W (1999) Europhys. Lett. 46:559

    Article  ADS  Google Scholar 

  50. Prokof’ev N, Svistunov B (2004) Phys. Rev. Lett. 92:015703

    Article  PubMed  ADS  Google Scholar 

  51. Freericks JK, Monien H (1996) Phys. Rev. B 53:2691

    Article  ADS  Google Scholar 

  52. Lifshitz IM (1965) Sov. Phys. Uspekhi 7:549

    Article  MathSciNet  Google Scholar 

  53. A. Galindo, P. Pascual, Quantum Mechanics II (Springer, 1990)

  54. Sandvik AW (1999) Phys. Rev. B 59:R14157

    Article  ADS  Google Scholar 

  55. Syljuåsen OF, Sandvik AW (2002) Phys. Rev. E 66:046701

    Article  ADS  Google Scholar 

  56. Alet F, Wessel S, Troyer M (2005) Phys. Rev. E 71:036706

    Article  ADS  Google Scholar 

  57. Pollock EL, Ceperley DM (1987) Phys. Rev. B 36:8343

    Article  ADS  Google Scholar 

  58. Scalettar RT, Batrouni GG, Zimanyi GT (1991) Phys. Rev. Lett. 66:3144

    Article  PubMed  ADS  Google Scholar 

  59. Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C (2002) Adv. At. Mol. Opt. Phys. 48:263

    Google Scholar 

  60. Groth S, Krüger P, Wildermuth S, Folman R, Fernholz T, Mahalu D, Bar-Joseph I, Schmiedmayer J (2004) Appl. Phys. Lett. 85:2980

    Article  ADS  Google Scholar 

  61. Wildermuth S, Hofferberth S, Lesanovsky I, Haller E, Andersson M, Groth S, Bar-Joseph I, Folman R, Schmiedmayer J (2005) Nature 435:440

    Article  PubMed  ADS  Google Scholar 

  62. P. Krüger, L.M. Andersson, S. Wildermuth, S. Hofferberth, E. Haller, S. Aigner, S. Groth, I. Bar-Joseph, J. Schmiedmayer, cond-mat/0504686

  63. Marte A, Volz T, Schuster J, Dürr S, Rempe G, van Kempen EGM, Verhaar BJ (2002) Phys. Rev. Lett. 89:282202

    Article  Google Scholar 

  64. Rigol M, Muramatsu A, Batrouni GG, Scalettar RT (2003) Phys. Rev. Lett. 91:130403

    Article  PubMed  ADS  Google Scholar 

  65. Wessel S, Alet F, Troyer M, Batrouni GG (2004) Phys. Rev. A 70:053615

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Santos.

Additional information

PACS

03.75.Lm; 03.75.Ss; 05.30.Jp; 32.80.Pj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gimperlein, H., Wessel, S., Schmiedmayer, J. et al. Random on-site interactions versus random potential in ultra cold atoms in optical lattices. Appl. Phys. B 82, 217–224 (2006). https://doi.org/10.1007/s00340-005-2088-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2088-7

Keywords

Navigation