Skip to main content
Log in

Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors

Applied Physics B Aims and scope Submit manuscript

Abstract

Using noble gases as a nonlinear medium, it has become possible to compress energetic laser pulses into the sub-10-fs regime. Hollow fiber capillaries can serve to increase the effective interaction length of the pulses, and impressive white-light continua have been reported as a result. With demonstrated bandwidths exceeding the optical octave, this method holds the potential for generating single-cycle optical pulses. On the practical side, however, it becomes very difficult to compensate for dispersive effects and to fully exploit the enormous bandwidth. We will discuss chirped mirrors as one means for pulse compression. A further challenge lies on the characterization side. Utilizing advanced characterization schemes, we were able to demonstrate compression of a white-light continuum down to a pulse duration of 3.8 fs, which corresponds to only about 1.6 cycles at the carrier wavelength. These are the shortest pulses in the visible/near-infrared wavelength range that have ever been produced with a non-adaptive approach to dispersion compensation. Moreover, these are the shortest pulses generated using chirped mirrors, which compares favorably to previous results that were achieved with much more elaborate and lossier adaptive compression schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Treacy EB (1969) IEEE J. Quantum Electron. QE-5:454

    Article  ADS  Google Scholar 

  2. Johnson AM, Stolen RH, Simpson WM (1984) Appl. Phys. Lett. 44:729

    Article  ADS  Google Scholar 

  3. Fork RL, Brito-Cruz CH, Becker PC, Shank CV (1987) Opt. Lett. 12:437

    Google Scholar 

  4. Nisoli M, De Silvestri S, Svelto O, Szipocs R, Ferencz K, Spielmann C, Sartania S, Krausz F (1997) Opt. Lett. 22:522

    ADS  Google Scholar 

  5. Matuschek N, Gallmann L, Sutter DH, Steinmeyer G, Keller U (2000) Appl. Phys. B 71:509

    Article  ADS  Google Scholar 

  6. Sansone G, Steinmeyer G, Vozzi C, Stagira S, Nisoli M, De Silvestri S, Starke K, Ristau D, Schenkel B, Biegert J, Gosteva A, Keller U (2004) Appl. Phys. B, 78:551

    Article  ADS  Google Scholar 

  7. Karasawa N, Li L, Suguro A, Shigekawa H, Morita R, Yamashita M (2001) J. Opt. Soc. Am. B 18:1742

    Article  ADS  Google Scholar 

  8. Yamane K, Zhang Z, Oka K, Morita R, Yamashita M, Suguro A (2003) Opt. Lett. 28:2258

    Article  PubMed  ADS  Google Scholar 

  9. Schenkel B, Biegert J, Keller U, Vozzi C, Nisoli M, Sansone G, Stagira S, De Silvestri S, Svelto O (2003) Opt. Lett. 28:1987

    Article  PubMed  ADS  Google Scholar 

  10. Trebino R, De Long KW, Fittinghoff DN, Sweetser JN, Krumbügel MA, Richman BA, Kane DJ (1997) Rev. Sci. Instrum. 68:3277

    Article  ADS  Google Scholar 

  11. Trebino R (2000) Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  12. Iaconis C, Walmsley IA (1998) Opt. Lett. 23:792

    ADS  Google Scholar 

  13. Iaconis C, Walmsley IA (1999) IEEE J. Quantum Electron. QE-35:501

    Article  ADS  Google Scholar 

  14. Augst S, Strickland D, Meyerhofer DD, Chin SL, Eberly JH (1989) Phys. Rev. Lett. 63:2212

    Article  PubMed  ADS  Google Scholar 

  15. Ammosov MV, Delone NB, Krainov VP (1986) Zh. Eksp. Teor. Fiz. 91:2008

    Google Scholar 

  16. Ammosov MV, Delone NB, Krainov VP (1986) Sov. Phys. JETP 64:1191

    Google Scholar 

  17. Nisoli M, De Silvestri S, Svelto O (1996) Appl. Phys. Lett. 68:2793

    Article  ADS  Google Scholar 

  18. Lehmeier HJ, Leupacher W, Penzkofer A (1985) Opt. Commun. 56:67

    Article  ADS  Google Scholar 

  19. Corkum PB, Rolland C (1989) Self-Focusing and Continuum generation in Gases. In: Alfano RR (ed) The Supercontinuum Laser Source. Springer, New York

    Google Scholar 

  20. Boyd RR (1992) Nonlinear Optics, Chapt. 6.2. Academic Press, San Diego

    Google Scholar 

  21. Fibich G, Gaeta AL (2000) Opt. Lett. 25:335

    Article  ADS  Google Scholar 

  22. Hauri CP, Kornelis W, Helbing FW, Heinrich A, Couairon A, Mysyrowicz A, Biegert J, Keller U (2004) Appl. Phys. B 79:673

    Article  ADS  Google Scholar 

  23. Agrawal GP (1995) Nonlinear Fiber Optics, 2nd edn. Academic Press, San Diego

    Google Scholar 

  24. Dalgarno A, Kingston AE (1966) Proc. Roy. Soc. Lond. A 259:424

    ADS  Google Scholar 

  25. De Silvestri S, Nisoli M, Sansone G, Stagira S, Svelto O (2004) Few-Cycle Pulses by Extrenal Compression, In: Kärtner FX (ed) Few-Cycle Laser Pulse Generation and Its Application. Top. Appl. Phys. 95:137 (2004)

    Google Scholar 

  26. Mulijlwijk R (1988) Metrologia 25:189

    Article  ADS  Google Scholar 

  27. Gires F, Tournois P (1964) C.R. Acad. Sci. Paris 258:6112

    Google Scholar 

  28. Steinmeyer G (2003) IEEE J. Quantum Electron. QE-39:1027

    Article  ADS  Google Scholar 

  29. Matuschek N, Kärtner FX, Keller U (1999) IEEE J. Quantum Electron. QE-35:129

    Article  ADS  Google Scholar 

  30. Dobrowolski JA, Tikhonravov AV, Trubetskov MK, Sullivan BT, Verly PG (1996) Appl. Opt. 35:644

    ADS  Google Scholar 

  31. Stibenz G, Steinmeyer G (2005) Opt. Express 13:2617

    Article  ADS  Google Scholar 

  32. Stibenz G, Steinmeyer G (2004) Opt. Express 12:6319

    Article  ADS  Google Scholar 

  33. Manassah JT (1989) Simple Models of Self-Phase and Induced-Phase Modulation, In: Alfano RR (ed) The Supercontinuum Laser Source. Springer, New York

    Google Scholar 

  34. Keusters D, Tan H-S, O’Shea P, Zeek E, Trebino R, Warren WS (2003) J. Opt. Soc. Am. B 20:2226

    Article  ADS  Google Scholar 

  35. Baltuška A, Pshenichnikov MS, Wiersma DA (1999) IEEE J. Quantum Electron. QE-35:459

    Article  ADS  Google Scholar 

  36. Tien A-C, Kane S, Squier J, Kohler B, Wilson K (1996) J. Opt. Soc. Am. B 13:1160

    Article  ADS  Google Scholar 

  37. Gallmann L, Steinmeyer G, Sutter DH, Matuschek N, Keller U (2000) Opt. Lett. 25:269

    Article  ADS  Google Scholar 

  38. G. Stibenz, G. Steinmeyer, submitted to IEEE J. Sel. Top. Quantum Electron. (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Steinmeyer.

Additional information

PACS

42.65.Re; 42.65.Wi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmeyer, G., Stibenz, G. Generation of sub-4-fs pulses via compression of a white-light continuum using only chirped mirrors. Appl. Phys. B 82, 175–181 (2006). https://doi.org/10.1007/s00340-005-2065-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2065-1

Keywords

Navigation