Skip to main content
Log in

Upconversion and thermometric applications of Er3+-doped Li:TeO2 glass

Applied Physics B Aims and scope Submit manuscript

Abstract

Near-infrared (NIR) excitation of Er3+-doped lithium-modified tellurite (Li:TeO2) glass results in anti-Stokes fluorescent emissions near 380 nm, 530 nm, 551 nm and 654 nm in addition to NIR Stokes emission. The anti-Stokes emissions are ascribed to transitions from the excited 4 G 11/2, 4 S 3/2(2 H 11/2) and 4 F 9/2 levels in Er3+. The excitation involves three and two incident photons. 532-nm excitation of this glass also leads to similar emissions. The mechanisms involved in these processes are discussed and the upconversion efficiency is calculated. The temperature dependence of the upconversion process has also been investigated. It is found that Er3+-doped tellurite glass can be used as a temperature sensor in the range 300–530 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Vetrone F, Boyer JC, Capobianco JA, Speghini A, Bettinelli M (2002) Appl. Phys. Lett. 80:1752

    Article  ADS  Google Scholar 

  2. Lin H, Meredith G, Jiang S, Peng X, Luo T, Peyghambarian N (2003) J. Appl. Phys. 93:186

    Article  ADS  Google Scholar 

  3. Hocde S, Jiang S, Peng X, Peyghambariam N, Lou T, Morrell M (2004) Opt. Mater. 25:149

    Article  ADS  Google Scholar 

  4. Gao Y, Nie QH, Xu TF, Shen X (2005) Spectrochim. Acta A 61:1259

    Article  Google Scholar 

  5. Peijzel PS, Meijerink A (2005) Chem. Phys. Lett. 401:341

    Article  Google Scholar 

  6. Gao Y, Nie QH, Xu TF, Shen X (2005) Spectrochim. Acta A 61:1259

    Article  Google Scholar 

  7. Zambell M, Speghini A, Ingletto G, Locatelli C, Bettinelli M, Vetrone F, Boyer JC, Capobianco J (2004) Opt. Mater. 25:215

    Article  ADS  Google Scholar 

  8. Matsuura D (2002) Appl. Phys. Lett. 81:4526

    Article  ADS  Google Scholar 

  9. Strohhofer C, Polman A (2001) J. Appl. Phys. 90:4314

    Article  ADS  Google Scholar 

  10. Sergeyev SV, Jaskorzynska B (2000) Phys. Rev. B 62:15628

    Article  ADS  Google Scholar 

  11. Rolli R, Gatterer K, Wachtler M, Bettinelli M, Speghini A, Ajo D (2001) Spectrochim. Acta A 57:2009

    Article  Google Scholar 

  12. Kumar GA, Riman R, Chae SC, Jang YN, Bae IK, Moon HS (2004) J. Appl. Phys. 95:3243

    Article  ADS  Google Scholar 

  13. Reisfeld R, Hormadaly J (1976) J. Chem. Phys. 64:3207

    Article  ADS  Google Scholar 

  14. Sun T, Zhang ZY, Grattan KTV (2000) Rev. Sci. Instrum. 71:4017

    Article  ADS  Google Scholar 

  15. Messias DN, Vermelho MVD, Gouveia-Neto AS, Aitchison JS (2002) Rev. Sci. Instrum. 73:476

    Article  ADS  Google Scholar 

  16. Trpkovski S, Wade SA, Baxter GW, Collins SF (2003) Rev. Sci. Instrum. 74:2880

    Article  ADS  Google Scholar 

  17. Rai SB, Singh AK, Singh SK (2003) Spectrochim. Acta A 59:3221

    Google Scholar 

  18. Tanabe S, Yoshii S, Hirao K, Soga N (1992) Phys. Rev. B 45:4620

    Article  ADS  Google Scholar 

  19. Hehlen MP, Frei G, Gudel FU (1994) Phys. Rev. B 50:16264

    Article  ADS  Google Scholar 

  20. Xie P, Rand SC (1993) Appl. Phys. Lett. 63:3125

    Article  ADS  Google Scholar 

  21. Filho ELF, Araujo CB (2002) J. Appl. Phys. 92:3065

    Article  ADS  Google Scholar 

  22. de Araujo LEE, Gomes ASL, de Araujo CB, Messaddeq Y, Florez A, Aegerter MA (1994) Phys. Rev. B 50:16219

    Article  ADS  Google Scholar 

  23. Tsuda M, Soga K, Inoue H, Makishina A (2000) J. Appl. Phys. 88:1900

    Article  ADS  Google Scholar 

  24. Catunda T, Nunes LAO, Florez F, Messaddeq Y, Agerter MA (1996) Phys. Rev. B 53:6065

    Article  ADS  Google Scholar 

  25. Reiche R, Nunes LAO, Carvalho CC, Messaddeq Y, Agerter MA (1993) Solid State Commun. 85:773

    Article  ADS  Google Scholar 

  26. Nii H, Ozaki K, Herren M, Morita M (1998) J. Lumin. 76:116

    Article  Google Scholar 

  27. Alencar MARC, Maciel GS, de Araujo CB, Patra A (2004) Appl. Phys. Lett. 84:4753

    Article  ADS  Google Scholar 

  28. Grattan KT, Palmer AW (1985) Rev. Sci. Instrum. 56:1784

    Article  ADS  Google Scholar 

  29. Farries MC, Fermann ME (1987) SPIE Fiber Opt. Sens. II 789:115

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anant Kumar Singh.

Additional information

PACS

42.70.Ce

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Rai, S., Rai, D. et al. Upconversion and thermometric applications of Er3+-doped Li:TeO2 glass. Appl. Phys. B 82, 289–294 (2006). https://doi.org/10.1007/s00340-005-2047-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2047-3

Keywords

Navigation