Skip to main content
Log in

Experimental analysis of mode-hopping in bulk semiconductor lasers

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this work we experimentally study mode-hopping in bulk semiconductor lasers. This stochastic process is ruled by Kramers statistics with a decay rate depending on the laser parameters of the temperature of the substrate and the pumping current. For a general combination of these parameters the average residence times in the two active modes are not equal, resulting in an asymmetric probability distribution for the modal intensities. We show that, by choosing an appropriate path in the parameter space, we can vary the residence times of the two modes while holding their ratio constant. Along this path, the shape of modal intensities distributions are constant up to a scaling factor which is a function of the laser parameters. Then, the system can be described by a single Langevin equation. The effect of adding noise to the pumping current is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gammaitoni L, Hänggi P, Jung P, Marchesoni F (1998) Rev Mod Phys 70:223

    Article  ADS  Google Scholar 

  2. Benzi R, Sutera A, Vulpiani A (1981) J Phys A 14:453

    Article  ADS  MathSciNet  Google Scholar 

  3. Nicolis C, Nicolis G (1981) Tellus 33:225

    Article  ADS  MathSciNet  Google Scholar 

  4. Giacomelli G, Marin F, Rabbiosi I (1999) Phys Rev Lett 82:675

    Article  ADS  Google Scholar 

  5. Barbay S, Giacomelli G, Marin F (2000) Phys Rev E 61:157

    Article  ADS  Google Scholar 

  6. Barbay S, Giacomelli G, Marin F (2000) Phys Rev Lett 85:4652

    Article  PubMed  ADS  Google Scholar 

  7. Wiesenfield K (1994) Phys Rev Lett 72:2125

    Article  PubMed  ADS  Google Scholar 

  8. Marino F, Giudici M, Barland S, Balle S (2002) Phys Rev Lett 88:040601

    Article  PubMed  ADS  Google Scholar 

  9. Pikovsky A, Kurths J (1997) Phys Rev Lett 78:775

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Giacomelli G, Giudici M, Balle S, Tredicce J (2000) Phys Rev Lett 84:3298

    Article  PubMed  ADS  Google Scholar 

  11. Barland S, Piro O, Giudici M, Tredicce JR, Balle S (2003) Phys Rev E 68:036209

    Article  ADS  Google Scholar 

  12. Mantegna RN, Spagnolo B (1996) Phys Rev Lett 76:563

    Article  PubMed  ADS  Google Scholar 

  13. Santagiustina M, Colet P, San Miguel M, Walgraef D (1997) Phys Rev Lett 79:3633

    Article  ADS  Google Scholar 

  14. Kramers H (1940) Physica (Utrecht) 7:284

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Giacomelli G, Marin F (1998) Quantum Semiclass Opt 10:469

    Article  ADS  Google Scholar 

  16. van Exter MP, Willemsen MB, Woerdman JP (1998) Phys Rev A 58:4191

    Article  Google Scholar 

  17. Willemsen MB, Khalid MUF, van Exter MP, Woerdman JP (1999) Phys Rev Lett 82:4815

    Article  ADS  Google Scholar 

  18. Nagler B, Peeters M, Albert J, Verschaffelt G, Panajotov K, Thienpont H, Veretennicoff I, Danckaert J, Barbay S, Giacomelli G, Marin F (2003) Phys Rev A 68:013813

    Article  ADS  Google Scholar 

  19. McNamara B, Wiesenfeld K, Roy R (1988) Phys Rev Lett 60:2626

    Article  PubMed  ADS  Google Scholar 

  20. Nalik J, Hoffer LM, Lippi GL, Vorgerd, Ch, Lange W (1992) Phys Rev A 45:R4237

    Article  ADS  Google Scholar 

  21. Furfaro L, Pedaci F, Hachair X, Giudici M, Balle S, Tredicce J (2004) IEEE J Quantum Electron QE-40:1365

    Article  ADS  Google Scholar 

  22. Linke R, Kasper B, Burrus C, Kaminow I, Ko J, Pei Lee T (1985) IEEE J Lightwave Technol 3:706

    Article  ADS  Google Scholar 

  23. Ohtsu M, Teramachi Y (1989) IEEE J Quantum Electron QE-25:31

    Article  ADS  Google Scholar 

  24. Ohtsu M, Teramachi Y, Otsuka Y, Osaki A (1986) IEEE J Quantum Electron QE-22:535

    Article  ADS  Google Scholar 

  25. Petermann K (1988) Laser Diode Modulation and Noise, ADOP. Kluwer Academic, Dordrecht

    Google Scholar 

  26. van’t Hoff J (1884) Etude de Dynamiques Chimiques. Muller, Amsterdam

    Google Scholar 

  27. Arrhenious S (1889) Z Phys Chem 4:226

    Google Scholar 

  28. Stratonovich RL(1967) Topics in the Theory of Random Noise. Gordon and Breach, New York, Vol II

    MATH  Google Scholar 

  29. Narducci LM, Abraham NB(1988) Laser Physics and Laser Instabilities. World Scientific, Singapore

    Google Scholar 

  30. Pedaci F, Giudici M, Giacomelli G, Tredicce J (2005) Phys Rev E 71:036125

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Giudici.

Additional information

PACS

42.65.Sf; 42.55.Sa; 42.50.-p

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedaci, F., Giudici, M., Tredicce, J. et al. Experimental analysis of mode-hopping in bulk semiconductor lasers. Appl. Phys. B 81, 993–1000 (2005). https://doi.org/10.1007/s00340-005-1987-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1987-y

Keywords

Navigation