Skip to main content
Log in

BiFeO3/Al2O3 gate stack for metal-ferroelectric-insulator-silicon memory FET for IoT applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The Effect of plasma enhanced atomic layer deposited (PEALD) Al2O3 buffer layer on the electrical and ferroelectric characteristics of the metal/ferroelectric/insulator/silicon (MFIS) gate stack has been investigated for ferroelectric field effect transistor (FeFET) structure for its potential application in internet of things. Radio frequency sputtering has been used for the deposition of ferroelectric (BiFeO3) film at room temperature. Structural and optical characteristics of the ferroelectric and dielectric films deposited on TiN and the silicon substrate has been obtained using X-ray diffractometer and laser ellipsometer. Polycrystalline rhombohedrally distorted perovskite structure of BiFeO3 film with dominant crystal peak {(104)/(110)} and refractive index 2.4 has been obtained at the annealing temperature of 500 °C. Different capacitor structures have been fabricated to obtain electrical and ferroelectric characteristics. Metal/ferroelectric/silicon structure shows the memory window of 4.75 V that has been further improved to 8.53 V with the introduction of 10 nm Al2O3 between ferroelectric and silicon as in MFIS structure. MFI(10 nm)S structure shows excellent data retention, fatigue resistant, and breakdown characteristics that make it a potential candidate for the gate stack of FeFET. To the best of author’s knowledge, this is the first report to integrate pure BiFeO3 film on PEALD-Al2O3/silicon substrate for non-volatile memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data and material available.

References

  1. O. Auciello, J.F. Scott, R. Ramesh, Phys. Today 51, 22 (1998)

    Article  Google Scholar 

  2. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, I.E.E.E. Commun, Surv. Tutorials 17, 2347 (2015)

    Article  Google Scholar 

  3. Y. Arimoto, H. Ishiwara, MRS Bull. 29, 823 (2004)

    Google Scholar 

  4. H. Ishiwara, J. Nanosci. Nanotechnol. 12, 7619 (2012)

    Article  Google Scholar 

  5. R.K. Jha, P. Singh, M. Goswami, B.R. Singh, Ferroelectr. Lett. Sect. 46, 82 (2019)

    Article  Google Scholar 

  6. R.K. Jha, P. Singh, M. Goswami, B.R. Singh, Appl. Phys. A Mater. Sci. Process. 125, 798 (2019)

    Article  ADS  Google Scholar 

  7. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Appl. Phys. A Mater. Sci. Process. 124, 92 (2018)

    Article  ADS  Google Scholar 

  8. J.R. Teague, R. Gerson, W.J. James, Solid State Commun. 8, 1073 (1970)

    Article  ADS  Google Scholar 

  9. F. Kubel, H. Schmid, Acta Crystallogr. Sect. B 46, 698 (1990)

    Article  Google Scholar 

  10. J. Robertson, R.M. Wallace, Mater. Sci. Eng. R Reports 88, 1 (2015)

    Article  Google Scholar 

  11. N. Mehan, V. Gupta, K. Sreenivas, A. Mansingh, J. Appl. Phys. 96, 3134 (2004)

    Article  ADS  Google Scholar 

  12. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Superlattices Microstruct. 121, 55 (2018)

    Article  ADS  Google Scholar 

  13. Z.Y. Wang, R.J. Zhang, H.L. Lu, X. Chen, Y. Sun, Y. Zhang, Y.F. Wei, J.P. Xu, S.Y. Wang, Y.X. Zheng, L.Y. Chen, Nanoscale Res. Lett. 10, 46 (1–6) (2015)

    ADS  Google Scholar 

  14. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 36, 04G101 (2018)

    Google Scholar 

  15. H.Y. Dai, Z.P. Chen, T. Li, R.Z. Xue, J. Chen, J. Supercond. Nov. Magn. 26, 3125 (2013)

    Article  Google Scholar 

  16. W. Xing, Y. Ma, Z. Ma, Y. Bai, J. Chen, S. Zhao, Smart Mater. Struct. 23, 085030 (2014)

    Article  ADS  Google Scholar 

  17. S. Prosandeev, Y. Yang, C. Paillard, L. Bellaiche, Npj Comput. Mater. 4, 1 (2018)

    Article  ADS  Google Scholar 

  18. G.D. Hu, S.H. Fan, C.H. Yang, W.B. Wu, Appl. Phys. Lett. 92, 192905 (2008)

    Article  ADS  Google Scholar 

  19. L. Pintilie, M. Lisca, M. Alexe, Appl. Phys. Lett. 86, 1 (2005)

    Article  Google Scholar 

  20. R.K. Jha, P. Singh, M. Goswami, B.R. Singh, J. Mater. Sci. Mater. Electron. 30, 15224 (2019)

    Article  Google Scholar 

  21. R. Meyer, R. Waser, K. Prume, T. Schmitz, S. Tiedke, Appl. Phys. Lett. 86, 1 (2005)

    Google Scholar 

  22. X. Zou, L. You, W. Chen, H. Ding, D. Wu, T. Wu, L. Chen, J. Wang, ACS Nano 6, 8997 (2012)

    Article  Google Scholar 

  23. S.H. Baek, C.M. Folkman, J.W. Park, S. Lee, C.W. Bark, T. Tybell, C.B. Eom, Adv. Mater. 23, 1621 (2011)

    Article  Google Scholar 

  24. B.J. Rodriguez, Y.H. Chu, R. Ramesh, S.V. Kalinin, Appl. Phys. Lett. 93, 142901 (2008)

    Article  ADS  Google Scholar 

  25. D. Suh, W.S. Liang, Thin Solid Films 539, 309 (2013)

    Article  ADS  Google Scholar 

  26. J.M. Rafí, M. Zabala, O. Beldarrain, F. Campabadal, J. Electrochem. Soc. 158, G108 (2011)

    Article  Google Scholar 

  27. T.P. Juan, J. Lu, M. Lu, J. Electrochem. Soc. 155, H991 (2008)

    Article  Google Scholar 

  28. P. Singh, A.N. Bhatt, A. Bansal, R.K. Singh, B.R. Singh, Ferroelectrics 504, 139 (2016)

    Article  Google Scholar 

  29. P. Singh, R.K. Jha, R.K. Singh, B.R. Singh, Microelectron. Int. 35, 189 (2018)

    Article  Google Scholar 

  30. P. Singh, R.K. Jha, M. Goswami, B.R. Singh, Microelectron. Int. 37, 155 (2020)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod Narayan Tripathi.

Ethics declarations

Conflicts of interest

There is no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathi, P.N., Ojha, S.K. & Nazarov, A. BiFeO3/Al2O3 gate stack for metal-ferroelectric-insulator-silicon memory FET for IoT applications. Appl. Phys. A 127, 58 (2021). https://doi.org/10.1007/s00339-020-04203-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04203-z

Keywords

Navigation