Skip to main content

Advertisement

Log in

Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, there has been increasing interest in thermal energy storage (TES) systems for concentrated solar power (CSP) plants, which allow for continuous operation when sunlight is unavailable. Thermochemical energy storage materials have the advantage of much higher energy densities than latent or sensible heat materials. Furthermore, thermochemical energy storage systems based on metal hydrides have been gaining great interest for having the advantage of higher energy densities, better reversibility, and high enthalpies. However, in order to achieve higher efficiencies desired of a thermal storage system by the US Department of Energy, the system is required to operate at temperatures >600 °C. Operation at temperatures >600 °C presents challenges including material selection, hydrogen embrittlement and permeation of containment vessels, appropriate selection of heat transfer fluids, and cost. Herein, the technical difficulties and proposed solutions associated with the use of metal hydrides as TES materials in CSP applications are discussed and evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Bauer, N. Pfleger, N. Breidenbach, M. Eck, D. Laing, S. Kaesche, Appl. Energy 111, 1114–1119 (2013)

    Article  Google Scholar 

  2. I. Ortega-Fernandez, J. Rodriguez-Aseguinolaza, A. Gil, A. Faik, B. D’Aguanno, J. Sol. Energy 137, 041005-1–041005-6 (2015)

    Google Scholar 

  3. R. Jacob, F. Bruno, Renew. Sustain. Energy Rev. 48, 79–87 (2015)

    Article  Google Scholar 

  4. N. Pfleger, T. Bauer, C. Martin, M. Eck, A. Worner, Beilstein J. Nanotechnol. 6, 1487–1497 (2015)

    Article  Google Scholar 

  5. P. Pardo, A. Deydier, Z. Anxionnaz-Minvielle, S. Rouge, M. Cabassud, P. A. Cognet, Renew. Sustain. Energy Rev. 32, 591–610 (2014)

    Article  Google Scholar 

  6. Z. Bao, Int. J. Hydrog. Energy 40, 5664–5676 (2015)

    Article  Google Scholar 

  7. W.T. Chandler, R.J. Walter, A Symposium Presented at the Seventy-fifth Annual Meeting American Society for Testing and Materials (1974), pp. 170–197. doi:10.1520/STP38937S

  8. NASA, Safety Standards for Hydrogen and Hydrogen Systems: Guidelines for Hydrogen System Design, Materials Selection, Operations, Storage, and Transportation, (1997), NSS 1740.16

  9. C. San Marchi, B.P. Somerday, K.A. Nibur, Int. J. Hydrog. Energy 39, 20434–20439 (2014)

    Article  Google Scholar 

  10. C. San Marchi, B. Somerday, S. Robinson, Permeability, Solubility and Diffusivity of Hydrogen Isotopes in Stainless Steels at High Gas Pressures. Sandia National Laboratory, Report number WSRC-STI-2007-00579 (2005)

  11. G.W. Hollenburg, E.P. Simonen, G. Kalinin, A. Terlain, Fusion Eng. Des. 28, 190–208 (1995)

    Article  Google Scholar 

  12. E.R. Gilbert, R.P. Allen, D.L. Baldwin, R.D. Bell, J.L. Brimhall, R.G. Clemmer, S.C. Marschman, M.A. McKinnon, R.E. Page, H.G. Powers, S.G. Chalk, Fusion Technol. 21, 739–744 (1992)

    Google Scholar 

  13. H. Nakamuraa, K. Isobea, M. Nakamichib, T. Yamanishia, Fusion Eng. Des. 85, 1531–1536 (2010)

    Article  Google Scholar 

  14. R.G. Song, Surf. Coat. Technol. 168, 191–194 (2003)

    Article  Google Scholar 

  15. I.L. Tazhibaeva, A.K. Klepikov, O.G. Romanenko, V.P. Shestakov, Fusion Eng. Des. 5152, 199–205 (2000)

    Article  Google Scholar 

  16. C. Shan, A. Wu, Y. Li, Z. Zhao, Q. Chen, Q. Huang, S. Shi, J. Nucl. Mater. 191194, 221–225 (1992)

    Article  Google Scholar 

  17. A. Itakura, M. Tosa, S. Ikeda, K. Yoshihara, Vacuum, 47, 697–700 (1996)

    Article  Google Scholar 

  18. T. Usui, A. Sawada, M. Amaya, A. Suzuki, T. Chikada, T. Terai, J. Nucl. Sci. Technol. 52, 1318–1322 (2015)

    Article  Google Scholar 

  19. R.A. Causey, R.A. Karnesky, C. San Marchi, Tritium Barriers and Tritium Diffusion in Fusion Reactors. (Sandia National Laboratories, 2009)

  20. K.S. Forcey, D.K. Ross, C.H. Wu, J. Nucl. Mater. 182, 36–51 (1991)

    Article  ADS  Google Scholar 

  21. Z. Guikai, L. Ju, C. Chang’an, D. Sanping, L. Guoping, J. Nucl. Mater. 417, 1245–1248 (2011)

    Article  ADS  Google Scholar 

  22. K.C. Patil, S.T. Aruna, S. Ekambaram, Curr. Opin. Solid State Mater. Sci. 2, 158–165 (1997)

    Article  ADS  Google Scholar 

  23. K.C. Patila, S.T. Arunab, T. Mimanial, Curr. Opin. Solid State Mater. Sci. 6, 507–512 (2002)

    Article  ADS  Google Scholar 

  24. R. Mahmoodian, R.G. Rahbari, M. Hamdi, JOM J. Min. Met. Mater. Sci. 65, 80–85 (2013)

    Article  Google Scholar 

  25. J.P. Holman, Heat Transfer, 8th edn. (McGraw-Hill, New York, 1997)

    Google Scholar 

  26. R. Siegel, J.R. Howell, Thermal Radiation Heat Transfer, 2nd edn. (McGraw-Hill, New York, 1981)

    Google Scholar 

  27. C. Corgnale, T. Motyka, S. Greenway, J. Perez-Berrios, A. Nakano, H. Ito, T. Maeda, J. Alloy Compd. 580, S406–S409 (2013)

    Article  Google Scholar 

  28. K.M. Guthrie, Data and techniques for preliminary capital cost estimating (McGraw-Hill, New York, 1969), pp. 114–142

    Google Scholar 

  29. G. Cerri, C. Salvini, C. Corgnale, A. Giovannelli, D.D.L. Manzano, A.O. Martinez, A.L. Duigou, J.-M. Borgard, C. Mansilla, Int. J. Hydrog. Energy 35(9), 4002–4014 (2010)

    Article  Google Scholar 

  30. E. Douglas, Industrial Chemical Process Design (McGraw Hill Professional Engineering, Texas, 2003)

    Google Scholar 

  31. ApenTech. Aspen capital cost estimator, Version v8 (2012)

  32. C. Corgnale, B. Hardy, T. Motyka, R. Zidan, J. Teprovich, B. Peters, Renew. Sustain. Energy Rev. 38, 821–833 (2014)

    Article  Google Scholar 

  33. B. Bogdanovic, A. Ritter, B. Spliethoff, Angew. Chem. Int. Ed. 29(3), 223–234 (1990)

    Article  Google Scholar 

  34. B. Bogdanović, A. Ritter, B. Spliethoff, K. Straßburger, Int. J. Hydrog. Energy 20(10), 811–822 (1995)

    Article  Google Scholar 

  35. B. Iverson, T.M. Conboy. J.J. Pasch, A.M. Kruizenga, Appl. Energy 111, 957–970 (2013)

    Article  Google Scholar 

  36. D. Sheppard, C. Corgnale, B. Hardy, T. Motyka, R. Zidan, M. Paskevicious, C. Buckley, RSC Adv. 51(4), 26552–26562 (2014)

    Article  Google Scholar 

  37. A. Chaise, P. De Rango, P. Marty, D. Fruchart, Int. J. Hydrog. Energy 35, 6311–6322 (2010)

    Article  Google Scholar 

  38. W. Mueller, J. Blackledge, G. Libowitz, Metal Hydrides (Academic Press, New York and London, 1968)

    Google Scholar 

  39. D. Harries, M. Paskevicius, D. Sheppard, T. Price, C. Buckley, Proc. IEEE 100, 539–549 (2012)

    Article  Google Scholar 

  40. C. Corgnale, B.J. Hardy, D.A. Tamburello, S.L. Garrison, D.L. Anton, Int. J. Hydrog. Energy 37, 2812–2824 (2012)

    Article  Google Scholar 

  41. B.J. Hardy, D.L. Anton, Int. J. Hydrog. Energy 34, 2992–3004 (2009)

    Article  Google Scholar 

  42. P.A. Ward, C. Corgnale, J. Teprovich, T. Motyka, B. Hardy, B. Peters, R. Zidan J. Alloys Compd. 645, S374–S378 (2015)

    Article  Google Scholar 

  43. G. Kolb, C. Ho, J. Gary, Power Tower Technology Roadmap and Cost Reduction Plan. Sandia Report SAND2011-2419 (2011)

  44. R.W. Bradshaw, S.H. Goods, Accelerated Corrosion Testing of a Nickel-Based Alloy in a Molten Salt. Sandia Report SAND2001-8758 (2009)

  45. K. Vignarooban, X. Xu, A. Arvay, K. Hsu, A.M. Kannan, Appl. Energy 146, 383–396 (2015)

    Article  Google Scholar 

  46. Y. Tian, C.Y. Zhao, Appl. Energy 104, 538–553 (2013)

    Article  Google Scholar 

  47. A. Modi, F. Haglind, Appl. Therm. Eng. 65, 201–208 (2014)

    Article  Google Scholar 

  48. J. Sangster, A.D. Pelton, in Phase Diagrams of Binary Hydrogen Alloys, ed. by F.D. Manchester (ASM International, Materials Park, OH, 2000)

  49. J.J. Vajo, F. Mertens, C.C. Ahn, R.C. Bowman, B. Fultz, J. Phys. Chem. B 108, 13977–13983 (2004)

    Article  Google Scholar 

  50. W.C. Johnson, M.F. Stubbs, A.E. Sidwell, A. Pechukas, J. Am. Chem. Soc. 61, 318–329 (1939)

    Article  Google Scholar 

  51. B. Huang, K. Yvon, P. Fischer, J. Alloys Compd. 178, 173–179 (1992)

    Article  Google Scholar 

  52. R.I. Dunn, P. Hearps, M.N. Wright, Proc. IEEE 100, 504–515 (2012)

    Article  Google Scholar 

  53. Y. Wu, N. Ren, T. Wang, C. Ma, Sol. Energy 85, 1957–1966 (2011)

    Article  ADS  Google Scholar 

  54. K. Vignarooban, P. Pugazhendhi, C. Tucker, D. Gervasio, A.M. Kannan, Sol. Energy 103, 62–69 (2014)

    Article  ADS  Google Scholar 

  55. N. Boerema, G. Morrison, R. Taylor, G. Rosengarten, Sol. Energy 86, 2293–2305 (2012)

    Article  ADS  Google Scholar 

  56. J. Pacio, T. Wetzel, Sol. Energy 93, 11–22 (2013)

    Article  ADS  Google Scholar 

  57. J. Pacio, C. Singer, T. Wetzel, R. Uhlig, Appl. Therm. Eng. 60, 295–302 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

SRNL would like to acknowledge the US Department of Energy Office of Science Sunshot program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragaiy Zidan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ward, P.A., Corgnale, C., Teprovich, J.A. et al. Technical challenges and future direction for high-efficiency metal hydride thermal energy storage systems. Appl. Phys. A 122, 462 (2016). https://doi.org/10.1007/s00339-016-9909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9909-x

Keywords

Navigation