Applied Physics A

, 122:353

Complex and liquid hydrides for energy storage

  • Elsa Callini
  • Zuleyha Özlem Kocabas Atakli
  • Bjørn C. Hauback
  • Shin-ichi Orimo
  • Craig Jensen
  • Martin Dornheim
  • David Grant
  • Young Whan Cho
  • Ping Chen
  • Bjørgvin Hjörvarsson
  • Petra de Jongh
  • Claudia Weidenthaler
  • Marcello Baricco
  • Mark Paskevicius
  • Torben R. Jensen
  • Mark E. Bowden
  • Thomas S. Autrey
  • Andreas Züttel
Invited Paper

DOI: 10.1007/s00339-016-9881-5

Cite this article as:
Callini, E., Atakli, Z.Ö.K., Hauback, B.C. et al. Appl. Phys. A (2016) 122: 353. doi:10.1007/s00339-016-9881-5
Part of the following topical collections:
  1. Hydrogen-based energy storage

Abstract

The research on complex hydrides for hydrogen storage was initiated by the discovery of Ti as a hydrogen sorption catalyst in NaAlH4 by Boris Bogdanovic in 1996. A large number of new complex hydride materials in various forms and combinations have been synthesized and characterized, and the knowledge regarding the properties of complex hydrides and the synthesis methods has grown enormously since then. A significant portion of the research groups active in the field of complex hydrides is collaborators in the International Energy Agreement Task 32. This paper reports about the important issues in the field of complex hydride research, i.e. the synthesis of borohydrides, the thermodynamics of complex hydrides, the effects of size and confinement, the hydrogen sorption mechanism and the complex hydride composites as well as the properties of liquid complex hydrides. This paper is the result of the collaboration of several groups and is an excellent summary of the recent achievements.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Elsa Callini
    • 1
    • 2
  • Zuleyha Özlem Kocabas Atakli
    • 2
  • Bjørn C. Hauback
    • 3
  • Shin-ichi Orimo
    • 12
  • Craig Jensen
    • 13
  • Martin Dornheim
    • 10
  • David Grant
    • 11
  • Young Whan Cho
    • 9
  • Ping Chen
    • 7
  • Bjørgvin Hjörvarsson
    • 14
  • Petra de Jongh
    • 6
  • Claudia Weidenthaler
    • 15
  • Marcello Baricco
    • 4
  • Mark Paskevicius
    • 5
  • Torben R. Jensen
    • 5
  • Mark E. Bowden
    • 8
  • Thomas S. Autrey
    • 8
  • Andreas Züttel
    • 1
    • 2
  1. 1.Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC)École polytechnique fédérale de LausanneSionSwitzerland
  2. 2.EMPA Materials Science and TechnologySionSwitzerland
  3. 3.Physics DepartmentInstitute for Energy TechnologyKjellerNorway
  4. 4.Department of Chemistry and NISUniversity of TurinTurinItaly
  5. 5.Department of Chemistry, Center for Materials Crystallography, Interdisciplinary Nanoscience CenterAarhus UniversityAarhus CDenmark
  6. 6.Debye Institute for Nanomaterials ScienceUtrecht UniversityUtrechtThe Netherlands
  7. 7.Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  8. 8.Pacific Northwest National LaboratoryRichlandUSA
  9. 9.Future Convergence Research Division, High Temperature Energy Materials Research CenterKorea Institute of Science and TechnologySeoulRepublic of Korea
  10. 10.Department of Nanotechnology, Materials TechnologyHelmholtz-Zentrum GeesthachtGeesthachtGermany
  11. 11.University ParkNottinghamUK
  12. 12.WPI Advanced Institute for Materials Research (WPI-AIMR), Institute for Materials ResearchTohoku UniversitySendaiJapan
  13. 13.Department of ChemistryUniversity of Hawaii at ManoaHonoluluUSA
  14. 14.Department of Physics and Astronomy, Materials PhysicsUppsalaSweden
  15. 15.Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungMülheim an der RuhrGermany

Personalised recommendations