Skip to main content
Log in

Indirect laser surgery

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present communication, it is shown that a laser scalpel operating at the wavelength of 0.97 μm with a fiber tip having a strongly absorbing coating proves to be efficient for making contact incisions. At 6 W laser pump radiation, the temperature of silica glass on the cutting fiber tip during cutting is close to the silica glass softening point. The high fiber tip temperature allows bloodless resection with the cut depth of more than 1 mm and with high tissue cutting speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S.M. Zeitels, J.A. Burns, G. Lopez-Guerra, R.R. Anderson, R.E. Hillman, Ann. Otol. Rhinol. Laryngol. Suppl. 199, 3–24 (2008)

    Google Scholar 

  2. Y. Yan, A.E. Olszewski, M.R. Hoffman, P. Zhuang, Ch. N. Ford, S.H. Dailey, J.J. Jiang, J. Voice 24(1), 102–109 (2010)

  3. A.V. Shakhov, A.B. Terentjeva, V.A. Kamensky, L.B. Snopova, F.I. Feldstain, A.M. Sergeev, Optical coherence tomography monitoring for laser surgery of laryngeal carcinoma. J. Surg. Oncol. 77, 253–259 (2001). doi:10.1002/jso.1105

    Article  Google Scholar 

  4. V. Kamensky, F. Feldchtein, V. Gelikonov, L. Snopova, S. Muraviov, A. Malyshev, N. Bityurin, A. Sergeev, In situ monitoring of laser modification process in human cataractous lens and porcine cornea using coherence tomography. J. Biomed. Opt. 4(1), 137–143 (1999). doi:10.1117/1.429927

    Article  ADS  Google Scholar 

  5. K. Stock, T. Stegmayer, R. Graser, W. Förster, R. Hibst, Comparison of different focusing fiber tips for improved oral diode laser surgery. Lasers Surg. Med. 44(10), 815–823 (2012). doi:10.1002/lsm.22091

    Article  Google Scholar 

  6. A. Malyshev, N. Bityurin, Appl. Phys. A 79, 4–6 (2004). doi:10.1007/s00339-004-26287

    Article  Google Scholar 

  7. V.I. Yusupov, V.M. Chudnovskii, V.N. Bagratashvili, Laser-induced hydrodynamics in water-saturated biotissues. 1. Generation of bubbles in liquid. Laser Phys. 20(7), 1641–1647 (2010)

    Article  ADS  Google Scholar 

  8. G.E. Romanos, Diode laser soft-tissue surgery: advancements aimed at consistent cutting, improved clinical outcomes. Compend. Contin. Educ. Dent. 34, 752–757 (2013). (quiz 758)

    Google Scholar 

  9. M. Amzayyb, R.R. van den Bos, V.M. Kodach, D.M. de Bruin, T. Nijsten, H.A.M. Neumann, M.J.C. van Gemert, Carbonized blood deposited on fibres during 810, 940 and 1,470 nm endovenous laser ablation: thickness and absorption by optical coherence tomography. Lasers Med. Sci. 25, 439–447 (2010). doi:10.1007/s10103-009-0749-1

    Article  Google Scholar 

  10. D.S. Kuznetsova, M.M. Karabut, V.V. Elagin, M.A. Shakhova, V.I. Bredikhin, O.S. Baskina, L.B. Snopova, A.V. Shakhov, V.A. Kamensky, Comparative analysis of biotissue laser resection using strongly absorbing optical fiber tips. Opt. Photonics J. 5, 1–5 (2015). doi:10.4236/opj.2015.51001

    Article  ADS  Google Scholar 

  11. D. Kuznetsova, V. Elagin, M. Karabut, M. Shakhova, V. Bredikhin, L. Snopova, A. Shakhov, N. Sapogova, N. Bityurin, V. Bagratashvili, V. Kamensky, The influence on biotissue laser resection of a strongly absorbing layer at the optical fiber tip. J. Innov. Opt. Health Sci. doi:10.1142/S1793545816500115

  12. G.Y. Golubyatnikov, M.A. Shakhova, L.B. Snopova, A.B. Terent’yeva, comparative studies of infrared laser and radio-frequency action on in vitro biotissues by the method of polarization sensitive optical coherence tomography. Radiophys. Quantum Electron. 53(1), 37–44 (2010)

    Article  ADS  Google Scholar 

  13. I.L. Shlivko, M.Y. Kirillin, E.V. Donchenko, D.O. Ellinsky, O.E. Garanina, V.A. Kamensky, Identification of layers in optical coherence tomography of skin: comparative analysis of experimental and Monte Carlo simulated images. Skin Res. Technol. 1, 1–7 (2015). doi:10.1111/srt.12209

    Google Scholar 

  14. A.N. Bashkatov, E.A. Genina, V.I. Kochubey, V.V. Tuchin, Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)

    Article  ADS  Google Scholar 

  15. P. Taroni, A. Pifferi, A. Torricelli, L. Spinelli, G.M. Danesini, R. Cubeddu, Do shorter wavelengths improve contrast in optical mammography? Phys. Med. Biol. 49, 1203–1215 (2004). doi:10.1364/OE.17.015932

    Article  Google Scholar 

  16. J.X. Zhu, D.J. Pine, D.A. Weitz, Internal reflection of diffusive light in random media. Phys. Rev. A 44, 3948 (1991)

    Article  ADS  Google Scholar 

  17. M.J. Weber, Handbook of Optical Materials, The CRC Press Laser and Optical Science and Technology Series (CRC Press, Boca Raton, 2003)

    Google Scholar 

  18. R.M. Verdaasdonk, F.C. Holstege, E.D. Jansen, C. Borst, Temperature along the surface of modified fiber tips for Nd:YAG laser angioplasty. Lasers Surg. Med. 11, 213–222 (1991)

    Article  Google Scholar 

Download references

Acknowledgments

The work was undertaken with financial support from the RSF Grant “The Use of Laser Induced Nonequilibrium Processes in Medical Technologies” No. 14-15-00840.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Bityurin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bredikhin, V., Kamensky, V., Sapogova, N. et al. Indirect laser surgery. Appl. Phys. A 122, 181 (2016). https://doi.org/10.1007/s00339-016-9734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9734-2

Keywords

Navigation