Skip to main content
Log in

Enhanced thermoelectric properties of bismuth telluride–organic hybrid films via graphene doping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermoelectric properties of graphene-doped bismuth telluride–PEDOT:PSS–glycerol (hybrid) films were investigated. Prior to the study, p-type and n-type hybrid films were prepared by doping the PEDOT:PSS–glycerol with the p- and n-type bismuth telluride. Graphene-doped hybrid films were prepared by adding graphene particles of concentration ranging from 0.02 to 0.1 wt% into the hybrid films. Films of graphene-doped hybrid system were then prepared on a glass substrate using a spin-coating technique. It was found that the electrical conductivity of the hybrid films increases with the increasing of the graphene-dopant concentration and optimum at 0.08 wt% for both p- and n-type films, namely 400 and 195 S/cm, respectively. Further increasing in the concentration caused a decreasing in the electrical conductivity. Analysis of the thermoelectric properties of the films obtained that the p-type film exhibited significant improvement in its thermoelectric properties, where the thermoelectric properties increased with the increasing of the doping concentration. Meanwhile, for the case of n-type film, graphene doping showed a negative effect to the thermoelectrical properties, where the thermoelectric properties decreased with the increasing of doping concentration. Seebeck coefficient (and power factor) for optimum p-type and n-type hybrid thin films, i.e., doped with 0.08 wt% of graphene, is 20 μV/K (and 160 μW m−1 K−2) and 10 μV/K (and 19.5 μW m−1 K−2), respectively. The obtained electrical conductivity and thermoelectric properties of graphene-doped hybrid film are interestingly several orders higher than the pristine hybrid films. A thermocouple device fabricated utilizing the p- and n-type graphene-doped hybrid films can generate an electric voltage as high as 2.2 mV under a temperature difference between the hot-side and the cold-side terminal as only low as 55 K. This is equivalent to the output power as high as 24.2 nW (for output load as high as 50 Ω). The new thermoelectric device is potential for fueling a low-powered electronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Majumdar, Nat. Nanotechnol. 4, 214–215 (2009)

    Article  ADS  Google Scholar 

  2. J. Karni, Nat. Mater. 10, 481–482 (2011)

    Article  ADS  Google Scholar 

  3. L. Bell, Science 321, 1457–1461 (2008)

    Article  ADS  Google Scholar 

  4. J.H. Yang, F.R. Stabler, J. Electron. Mater. 38, 1245–1251 (2009)

    Article  ADS  Google Scholar 

  5. T.M. Tritt, M.A. Subramanian, MRS Bull. 31, 188–194 (2006)

    Article  Google Scholar 

  6. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  ADS  Google Scholar 

  7. D. Kraemer, B. Poudel, H.-P. Feng, J.C. Caylor, B. Yu, X. Yan, Y. Ma, X. Wang, D. Wang, A. Muto, K. McEnaney, M. Chiesa, Z. Ren, G. Chen, Nat. Mater. 10, 532–538 (2011)

    Article  ADS  Google Scholar 

  8. M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19, 1043–1053 (2007)

    Article  Google Scholar 

  9. X.B. Zhao, Appl. Phys. Lett. 86, 062111 (2005)

    Article  ADS  Google Scholar 

  10. L.P. Bulat, J. Electron. Mater. 39, 1650–1653 (2010)

    Article  ADS  Google Scholar 

  11. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B 47, 12727–12731 (1993)

    Article  ADS  Google Scholar 

  12. B. Zhang, J. Sun, H.E. Katz, F. Fang, R.L. Opila, ACS Appl. Mater. Interfaces 2, 3170–3178 (2010)

    Article  Google Scholar 

  13. O. Bubnova, Z.U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, X. Crispin, Nat. Mater. 10, 429–433 (2011)

    Article  ADS  Google Scholar 

  14. N. Toshima, M. Imai, S. Ichikawa, J. Electron. Mater. 40, 898–902 (2011)

    Article  ADS  Google Scholar 

  15. K. Kato, H. Hagino, K. Miyazaki, J. Electron. Mater. 42, 1313–1318 (2013)

    Article  ADS  Google Scholar 

  16. N. Petruzzella, R.C. Nelson, J. Chem. Phys. 42, 3922–3926 (1965)

    Article  ADS  Google Scholar 

  17. R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597–602 (2001)

    Article  ADS  Google Scholar 

  18. G. Venugopal, K. Krishnamoorthy, R. Mohan, S.-J. Kim, Mater. Chem. Phys. 132, 29–33 (2012)

    Article  Google Scholar 

  19. I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang, J.W. Suk, L.L. Zhang, E. Peng, S.H. Mousavi, A.B. Khanikaev, R. Piner, G. Shvets, R.S. Ruoff, Nano Lett. 12, 5679–5683 (2012)

    Article  ADS  Google Scholar 

  20. W.H. Kim, A.J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, Z.H. Kafafi, Appl. Phys. Lett. 80, 3844–3846 (2002)

    Article  ADS  Google Scholar 

  21. A.A.A. Rahman, A.A. Umar, M.H.U. Othman, Phys. E 66, 293–298 (2015)

    Article  Google Scholar 

  22. C.B. Vining, Nat. Mater. 8, 83–85 (2009)

    Article  ADS  Google Scholar 

  23. Y. Xu, Z. Li, W. Duan, Small 10, 2182–2199 (2014)

    Article  Google Scholar 

  24. S.H. Lee, H. Park, W. Son, H.H. Choi, J.H. Kim, J. Mater. Chem. A 2, 13380–13387 (2014)

    Article  Google Scholar 

  25. Y. Jiang, Q. Peng, H. Geng, H. Ma, Z. Shuai, Phys. Chem. Chem. Phys. 17, 3273–3280 (2015)

    Article  Google Scholar 

  26. J.H. We, S.J. Kim, B.J. Cho, Energy 73, 506–512 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support from the Ministry of Higher Education of Malaysia under the research fundamental FRGS/2/2013/SG02/UKM/02/8 and the HiCOE project (AKU 95) and the Ministry of Science, Technology and Environment (MOSTE) of Malaysia under the Science Fund project no 06-01-02-SF1157.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akrajas Ali Umar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A.A.A., Umar, A.A., Chen, X. et al. Enhanced thermoelectric properties of bismuth telluride–organic hybrid films via graphene doping. Appl. Phys. A 122, 133 (2016). https://doi.org/10.1007/s00339-016-9659-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9659-9

Keywords

Navigation