Skip to main content
Log in

Electrically and magnetically resonant dc-SQUID metamaterials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We propose a superconducting metamaterial design consisting of meta-atoms which are each composed of a direct current superconducting quantum interference device and a superconducting rod. This design provides negative refraction index behavior for a wide range of structure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V.G. Veselago, The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  2. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000)

    Article  ADS  Google Scholar 

  3. R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292, 77–79 (2001)

    Article  ADS  Google Scholar 

  4. N. Garcia, M. Nieto-Vesperinas, Is there an experimental verification of a negative index of refraction yet? Opt. Lett. 27, 885 (2002)

    Article  ADS  Google Scholar 

  5. D.R. Smith, D. Schurig, M. Rosenbluth, S. Schultz, S.A. Ramakrishna, J.B. Pendry, Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506 (2003)

    Article  ADS  Google Scholar 

  6. M. Ricci, N. Orloff, S.M. Anlage, Superconducting metamaterials. Appl. Phys. Lett. 87, 034102 (2005)

    Article  ADS  Google Scholar 

  7. S.M. Anlage, The physics and applications of superconducting metamaterials. J. Opt. 13, 024001 (2011)

    Article  ADS  Google Scholar 

  8. N. Lazarides, G.P. Tsironis, Rf superconducting quantum interference device metamaterials. Appl. Phys. Lett. 16, 163501 (2007)

    Article  ADS  Google Scholar 

  9. C.G. Du, H.Y. Chen, S.Q. Li, Quantum left-handed metamaterial from superconducting quantum-interference devices. Phys. Rev. B 74, 113105 (2006)

    Article  ADS  Google Scholar 

  10. C.G. Du, H.Y. Chen, S.Q. Li, Stable and bistable SQUID metamaterials. J. Phys.: Condens. Matter 20, 345220 (2008)

    Google Scholar 

  11. A.I. Maimistov, I.R. Gabitov, Nonlinear response of a thin metamaterial film containing Josephson junctions. Opt. Commun. 283, 1633–1639 (2010)

    Article  ADS  Google Scholar 

  12. N. Lazarides, G.P. Tsironis, Multistability and selforganization in disordered SQUID metamaterials. Supercond. Sci. Technol. 26, 084006 (2013)

    Article  ADS  Google Scholar 

  13. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, A one-dimensional tunable magnetic metamaterials. Opt. Express 21, 22540–22548 (2013)

    Article  ADS  Google Scholar 

  14. P. Jung, S. Butz, S.V. Shitov, A.V. Ustinov, Low-loss tunable metamaterials using superconducting circuits with Josephson junctions. Appl. Phys. Lett. 102, 062601 (2013)

    Article  ADS  Google Scholar 

  15. M. Trepanier, D. Zhang, O. Mukhanov, S.M. Anlage, Realization and modeling of metamaterials made of rf superconducting quantum-interference devices. Phys. Rev. X 3, 041029 (2013)

    Google Scholar 

  16. S. Butz, P. Jung, L.V. Filippenko, V.P. Koshelets, A.V. Ustinov, Protecting SQUID metamaterials against stray magnetic fields. Supercond. Sci. Technol. 26, 094003 (2013)

    Article  ADS  Google Scholar 

  17. P. Jung, S. Butz, M. Marthaler, M.V. Fistul, J. Leppakangas, V.P. Koshelets, A.V. Ustinov, Multistability and switching in a superconducting metamaterials. Nat. Commun. 5, 4730 (2014)

    Article  Google Scholar 

  18. K. Kobayashi, M. Yoshizawa, Y. Uchiyama, Wide dynamic range analog FLL system using high-Te SQUID for biomagnetic measurements. IEEE Trans. Magn. 47, 2871–2873 (2011)

    Article  ADS  Google Scholar 

  19. T. Oida, M. Tsuchida, T. Kobayashi, Direct detection of magnetic resonance signals in ultra-low field MRI using optically pumped atomic magnetometer with ferrite shields: magnetic field analysis and simulation studies. IEEE Trans. Magn. 48, 2877–2880 (2012)

    Article  ADS  Google Scholar 

  20. R.R.A. Syms, E. Shamonina, V. Kalinin, L. Solymar, A theory of metamaterials based on periodically loaded transmission lines: interaction between magnetoinductive and electromagnetic waves. J. Appl. Phys. 97, 064909 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research work was partially supported by the European Union Seventh Framework Program (FP7-REGPOT-2012-2013-1) under Grant Agreement No. 316165. Partial support by the Ministry of Education and Science of Russian Federation in the framework of Increase Competitiveness Program of the NUST MISIS (Contracts No. K2-2015-002, K2-2015-007 and K2-2016-051) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Shramkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shramkova, O.V., Lazarides, N., Tsironis, G.P. et al. Electrically and magnetically resonant dc-SQUID metamaterials. Appl. Phys. A 123, 58 (2017). https://doi.org/10.1007/s00339-016-0692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0692-5

Keywords

Navigation