Skip to main content

Advertisement

Log in

Antibacterial activity evaluation of bioactive glass and biphasic calcium phosphate nanopowders mixtures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the antibacterial activity of bioactive glass (BG) and biphasic calcium phosphate (BCP) nanopowders mixtures for the first time. 37S BG and BCP (50% HA-50% β-TCP) nanopowders were prepared via sol–gel technique. Characterization techniques such as X-ray diffraction, scanning electron microscopy, transition electron microscopy, and X-ray fluorescent. The antibacterial activity was studied using Escherichia coli and Salmonella typhi as gram-negative, and Staphylococcus aureus as gram-positive bacteria. The antibacterial effect of BG, BCP nanopowders, and their mixtures was evaluated at different concentrations. The 37S BG nanopowders showed minimum bactericidal concentration at 25 mg/ml. At broth concentrations below 300 mg/ml, BCP showed no antibacterial activity. BCP and BG nanopowders mixture (M2) with 60/40 ratio of BCP/BG showed noticeable antibacterial effect. It was concluded that BCP and 37S BG nanopowders mixture could be used as a good candidate for dental and orthopedic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Rameshbabu, R.K. Prasad, Curr. Appl. Phys. 9, S29 (2009)

    Article  ADS  Google Scholar 

  2. S. Kannan, J.M.G. Ventura, A.F. Lemos, A. Barba, J.M.F. Ferreira, Ceram. Int. 34, 7 (2008)

    Article  Google Scholar 

  3. T.W. Kim, Y.M. Park, D.H. Kim, H.H. Jin, K.K. Shin, J.S. Jung et al., Ceram. Int. 38, 1965 (2012)

    Article  Google Scholar 

  4. C. Jingdi, Y. Wang, C. Xiaofeng, R. Li, L. Chen, H. Wen, Q. Zhang, Mater. Lett. 65, 1923 (2011)

    Article  Google Scholar 

  5. M.S. Manjubala, Mater. Chem. Phys. 71, 272 (2001)

    Article  Google Scholar 

  6. A. Farzadi, M. Solati-Hashjin, F. Bakhshi, A. Aminian, Ceram. Int. 37, 65 (2011)

    Article  Google Scholar 

  7. L.L. Hench, H.A. Paschal, J. Biomed. Mater. Res. 7, 25–42 (1973)

    Article  Google Scholar 

  8. Ö.H. Andersson, I. Kangasniemi, J. Biomed. Mater. Res. 24, 1019 (1991)

    Article  Google Scholar 

  9. Ö.H. Andersson, K.H. Karlsson, K. Kari, J. Biomed. Mater. Res. 25, 1019 (1991)

    Article  Google Scholar 

  10. R.M. Day, Tissue Eng. 11, 768 (2005)

    Article  Google Scholar 

  11. O. Leppäranta, M. Vaahtio, T. Peltola, D. Zhang, L. Hupa, M. Hupa et al., J. Mater. Sci. Mater. Med. 19, 547 (2008)

    Article  Google Scholar 

  12. T.B. Lovelace, J.T. Mellonig, R.M. Meffert, A.A. Jones, P.V. Nummikoski, D.L. Cochran, J. Periodontol. 69, 1027 (1998)

    Article  Google Scholar 

  13. M. Peltola, I. Kinnunen, K. Aitasalo, J. Oral Maxillofac. Surg. 66, 639 (2008)

    Article  Google Scholar 

  14. A. Elshahat, M.A. Shermak, N. Inoue, E.Y. Chao, P. Manson, J. Craniofac. Surg. 15, 483 (2004)

    Article  Google Scholar 

  15. C.R. Anderegg, D.C. Alexander, M. Freidman, J. Periodontol. M. 70, 384 (1999)

    Article  Google Scholar 

  16. L.L. Hench, J. Wilson, An introduction to bioceramic, vol. 1 (Wiley, London, 1993), p. 41

    Book  Google Scholar 

  17. M. Zehnder, T. Waltimo, B. Sener, E. Soderling, J. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 101, 530 (2006)

    Article  Google Scholar 

  18. O. Rabih, M.D. Darouiche, N. Engl. J. Med. 350, 1422 (2004)

    Article  Google Scholar 

  19. C. Eiff, B. Jansen, W. Kohnen, K. Becker, Drugs 65, 179 (2005)

    Article  Google Scholar 

  20. L. Cremet, S. Corvec, P. Bemer, L. Bret, C. Lebrun, B. Lesimple et al., J. Infect. 64, 169 (2012)

    Article  Google Scholar 

  21. J.A. Wright, S.P. Nair, Int. J. Med. Microbiol. 300, 193 (2010)

    Article  Google Scholar 

  22. P.H. Hsieh, M.S. Lee, K.Y. Hsu, Y.H. Chang, H.N. Shih, S.W. Ueng, Clin. Infect. Dis. 49, 1036 (2009)

    Article  Google Scholar 

  23. J.C. Martinez-Pastor, E. Munoz-Mahamud, F. Vilchez, S. Garcia-Ramiro, G. Bori, J. Sierra et al., Antimicrob. Agents Chemother. 53, 4772 (2009)

    Article  Google Scholar 

  24. V. Mortazavi, M.M. Nahrkhalaji, M.H. Fathi, S.B. Mousavi, B.N. Esfahani, J. Biomed. Mater. Res. A. 94, 160 (2010)

    Article  Google Scholar 

  25. M.H. Fathi, A. Hanifi, Mater. Lett. 61, 3978 (2007)

    Article  Google Scholar 

  26. C.R. Mahon, D.C. Lehman, G. Manuselis, Textbook of diagnostic microbiology (W.B Saunders Company, Philadelphia, 2011), p. 276

    Google Scholar 

  27. Y.W. Tang, C.W. Stratton, Advanced techniques in diagnostic microbiology (Springer, Berlin, 2006), p. 65

    Google Scholar 

  28. E. Munukka, O. Lepparanta, M. Korkeamaki, M. Vaahtio, T. Peltola, D. Zhang et al., J. Mater. Sci. Mater. Med. 19, 27 (2008)

    Article  Google Scholar 

  29. L.A. Azaroff, Elements of X-ray Crystallography (McGraw-Hill, New York, 1968)

    Google Scholar 

  30. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, Biomaterials 21, 803 (2000)

    Article  Google Scholar 

  31. T.J. Webster, C. Ergun, R.H. Doremus, R.W. Siegel, R. Bizios, J. Biomed. Mater. Res. A. 51, 475 (2000)

    Article  Google Scholar 

  32. M. Sato, T.J. Webster, Expert Rev. Med. Devices 1, 105 (2004)

    Article  Google Scholar 

  33. D. Guo, K. Xu, X. Zhao andY. Han. Biomaterials 26, 4073 (2005)

    Article  MathSciNet  Google Scholar 

  34. D. White, The physiology and biochemistry of prokaryotes, 3rd edn. (Oxford University Press, New York, 2007)

    Google Scholar 

  35. I. Allan, H. Newman, M. Wilson, Biomaterials 22, 1683 (2001)

    Article  Google Scholar 

  36. S.V. Barbosa, S.W. Spangberg, D. Almeida, Int. Endodontics. J. 27, 6 (1994)

    Article  Google Scholar 

  37. D.A. Robinson, R.W. Griffith, D. Shechtman, R.B. Evans, M.G. Conzemius, Acta Biomater. 6, 1869 (2010)

    Article  Google Scholar 

  38. G. Schmalz, D. Arenholt-Bindslev, Biocompatibility of dental materials (Springer, Berlin, 2009), p. 207

    Google Scholar 

  39. Z. Nazemi, M. Haghbin Nazarpak, M. Mehdikhani-Nahrkhalaji, H. Staji, M.M. Kalani, Synthesis, characterisation and antibacterial effects of sol–gel derived biphasic calcium phosphate nanopowders. Micro Nano Lett. 9, 403 (2014)

    Article  Google Scholar 

  40. I. Zhong, D.C. Greenspan. Bioactive sol–gel compositions and methods. United States Patent US6171986B1 (2001)

  41. E. Schepers, L. Barbier, R. Ducheyne, Implant placement enhanced by bioactive glass particles of narrow size range. Int. J. Oral Max. Impl. 13, 655 (1998)

    Google Scholar 

  42. M. Mehdikhani Nahrkhalaji, M.H. Fathi, V. Mortazavi, S.B. Mousavi, S.M. Razavi, Subcutaneous connective tissue reactions to three types of bioactive glass nanopowders. J. Biomed. Nanotechnol. 7, 460 (2011)

    Article  Google Scholar 

  43. M. Mehdikhani-Nahrkhalaji, M.H. Fathi, V. Mortazavi, S.B. Mousavi, B. Hashemi-Beni, S.M. Razavi, Novel nanocomposite coating for dental implant applications. Mater. Sci. Mater. Med. 23, 485 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mrs. M. Kanani for her assistance in bacterial culture studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mehdikhani-Nahrkhalaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazemi, Z., Mehdikhani-Nahrkhalaji, M., Haghbin-Nazarpak, M. et al. Antibacterial activity evaluation of bioactive glass and biphasic calcium phosphate nanopowders mixtures. Appl. Phys. A 122, 1063 (2016). https://doi.org/10.1007/s00339-016-0587-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0587-5

Keywords

Navigation