Skip to main content

Advertisement

Log in

Facile synthesis of multilayer-like Si thin film as high-performance anode materials for lithium-ion batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the silicon anodes in lithium-ion batteries, it is well known that the enormous volumetric expansion/contraction is also the mainly reason for the capacity fading. In this manuscript, a new kind of Si thin films was prepared with a radio frequency magnetron sputtering method. By using a periodic modulation negative bias on the substrate, a density-modulated multilayer-like silicon thin films with different layer densities were used as anode materials of lithium-ion batteries, and which displayed a high capacity and stable cycling performances. The reason for the charming electrochemical performances may be owned to the particular density modulated microstructure of the Si thin films. It is conjectured that the lower density can as compliant layers and which provided the volume for the higher-density layer expansion in the process of the lithiation/delithiation. In contrast to the conventional silicon anodes, the density modulated microstructure in this work could exploit a new approach to silicon thin-film anode materials with outstanding electrochemical properties and mechanical stability. And these reports may be provide a new way to prepare the Si thin films for the high-energy, safe, and low-cost batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Midilli, I. Dincer, M. Ay, Energy Policy 34, 3623 (2006)

    Article  Google Scholar 

  2. K. Caldeira, A.K. Jain, M.I. Hoffert, Science 299, 2052 (2003)

    Article  ADS  Google Scholar 

  3. M.M. Thackeray, C. Wolverton, E.D. Isaacs, Energy Environ. Sci. 5, 7854 (2012)

    Article  Google Scholar 

  4. J.B. Goodenough, Acc. Chem. Res. 46, 1053 (2013)

    Article  Google Scholar 

  5. N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Angew. Chem. Int. Ed. 51, 9994 (2012)

    Article  Google Scholar 

  6. R.A. Huggins, Advanced Batteries: Materials Science Aspects (Springer, New York, 2008)

    Google Scholar 

  7. T. Xu, W. Wang, M. Gordin, D. Wang, D. Choi, JOM 62, 24 (2010)

    Article  Google Scholar 

  8. C. Sun, S. Rajasekhara, J.B. Goodenough, F. Zhou, J. Am. Chem. Soc. 133, 2132 (2011)

    Article  Google Scholar 

  9. L. Zhou, D.Y. Zhao, X.W. Lou, Adv. Mater. 24, 745 (2012)

    Article  Google Scholar 

  10. X. Su, Q. Wu, J. Li, X. Xiao, A. Lott, W. Lu, B.W. Sheldon, J. Wu, Adv. Energy Mater. 4, 1300882 (2014)

    Article  Google Scholar 

  11. H. Zhang, P.V. Braun, Nano Lett. 12, 2778 (2012)

    Article  Google Scholar 

  12. H. Kim, M. Seo, M.-H. Park, J. Cho, Angew. Chem. 122, 2192 (2010)

    Article  Google Scholar 

  13. H. Kim, M. Seo, M.-H. Park, J. Cho, Angew. Chem. Int. Ed. 49, 2146 (2010)

    Article  Google Scholar 

  14. A. Esmanski, G.A. Ozin, Adv. Funct. Mater. 19, 1999 (2009)

    Article  Google Scholar 

  15. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.B. Hu, Y. Cui, Nat. Nanotechnol. 7, 310 (2012)

    Article  ADS  Google Scholar 

  16. H. Wu, G.Y. Zheng, N. Liu, T.J. Carney, Y. Yang, Y. Cui, Nano Lett. 12, 904 (2012)

    Article  ADS  Google Scholar 

  17. N.A. Liu, L.B. Hu, M.T. McDowell, A. Jackson, Y. Cui, ACS Nano 5, 6487 (2011)

    Article  Google Scholar 

  18. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3, 31 (2008)

    Article  ADS  Google Scholar 

  19. M.H. Park, M.G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui, J. Cho, Nano Lett. 9, 3844 (2009)

    Article  Google Scholar 

  20. W. Si, X. Sun, X. Liu, L. Xi, Y. Jia, C. Yan, O.G. Schmidt, J. Power Source 267, 629 (2014)

    Article  Google Scholar 

  21. C. Yu, X. Li, T. Ma, J. Rong, R. Zhang, J. Shaffer, Y. An, Q. Liu, B. Wei, H. Jiang, Adv. Energy Mater. 2, 68 (2012)

    Article  Google Scholar 

  22. Y. Yu, L. Gu, C.B. Zhu, S. Tsukimoto, P.A. van Aken, J. Maier, Adv. Mater. 22, 2247 (2010)

    Article  Google Scholar 

  23. J. Deng, H. Ji, C. Yan, J. Zhang, W. Si, S. Baunack, S. Oswald, Y. Mei, O.G. Schmidt, Angew. Chem. 125, 2382 (2013)

    Article  Google Scholar 

  24. H. Cheng, R. Xiao, H. Bian, Z. Li, Y. Zhan, C.K. Tsang, C.Y. Chung, Z. Lu, Y.Y. Li, Mater. Chem. Phys. 144, 25 (2014)

    Article  Google Scholar 

  25. M.T. Demirkan, L. Trahey, T. Karabacak, J. Power Sources 273, 52 (2015)

    Article  ADS  Google Scholar 

  26. Y.Y. Tang, X.H. Xia, Y.X. Yu, S.J. Shi, J. Chen, Y.Q. Zhang, J.P. Tu, Electrochim. Acta 88, 664 (2013)

    Article  Google Scholar 

  27. X. Li, Z. Yang, S. Lin, D. Li, H. Yue, X. Shang, Y. Fu, D. He, J. Mater. Chem. A 2, 14817 (2014)

    Article  Google Scholar 

  28. H. Li, F. Cheng, Z. Zhu, H. Bai, Z. Tao, J. Chen, J. Alloys Compd. 509, 2919 (2011)

    Article  Google Scholar 

  29. G. Viera, S. Huet, L. Boufendi, J. Appl. Phys. 90, 4175 (2001)

    Article  ADS  Google Scholar 

  30. G.H. Yue, X.Q. Zhang, Y.C. Zhao, Q.S. Xie, X.X. Zhang, D.L. Peng, RSC Adv. 4, 21450 (2014)

    Article  Google Scholar 

  31. X.X. Zhang, Q.S. Xie, G.H. Yue, Y. Zhang, X.Q. Zhang, A.L. Lu, D.L. Peng, Electrochim. Acta 111, 746 (2013)

    Article  Google Scholar 

  32. G.H. Yue, Y.C. Zhao, C.G. Wang, X.X. Zhang, X.Q. Zhang, Q.S. Xie, Electrochim. Acta 152, 315 (2015)

    Article  Google Scholar 

  33. H. Nara, T. Yokoshima, T. Momma, T. Osaka, Energy Environ. Sci. 5, 6500 (2012)

    Article  Google Scholar 

  34. M. Agostini, J. Hassoun, J. Liu, M. Jeong, H. Nara, T. Momma, T. Osaka, Y. Sun, B. Scrosati, A.C.S. Appl, Mater. Interfaces 6, 10924 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxu Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Geng, Z. Facile synthesis of multilayer-like Si thin film as high-performance anode materials for lithium-ion batteries. Appl. Phys. A 122, 528 (2016). https://doi.org/10.1007/s00339-016-0068-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0068-x

Keywords

Navigation