Skip to main content
Log in

The voxel onset time as an in situ method to evaluate focal position effects on two-photon-induced lithography

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two-photon-induced lithography is a versatile method to generate arbitrary three-dimensional microstructures. Although the lithographic result sensitively depends on the experimental conditions, there is a lack of in situ methods to measure process conditions prior to structuring. Current methods rely on determining the size of cross-linked structures, such as single-volume pixels (voxels), as a result of a set of parameters. This procedure is time consuming and possesses several inherent drawbacks, since results are not easily interpretable. Therefore, we established an in situ method, called the voxel onset time (VOT) method, which is easy to integrate in an existing two-photon lithographic setup and is based on determining the time that a voxel necessitates to form by measuring the transmitted laser intensity. In this study, we demonstrate how the VOT method can be used to determine the influence of the axial focal position on voxel formation for different experimental conditions. We find that the voxel onset time is strongly linked to the maximum intensity that is influenced by specimen-induced spherical aberration, especially for a high-numerical-aperture objective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Allen, R. Nielson, D. Wise, J. Shear, Catalytic three-dimensional protein architectures. Anal. Chem. 77(16), 5089–5095 (2005)

    Article  Google Scholar 

  2. L. Amato, Y. Gu, N. Bellini, S. Eaton, G. Cerullo, R. Osellame, Integrated three-dimensional filter separates nanoscale from microscale elements in a microfluidic chip. Lab Chip 12(6), 1135–1142 (2012)

    Article  Google Scholar 

  3. R. Barer, S. Tkaczyk, Refractive index of concentrated protein solutions. Nature 173, 821–822 (1954)

    Article  ADS  Google Scholar 

  4. S. Basu, P. Campagnola, Enzymatic activity of alkaline phosphatase inside protein and polymer structures fabricated via multiphoton excitation. Biomacromolecules 5(2), 572–579 (2004)

    Article  Google Scholar 

  5. S. Basu, P. Campagnola, Properties of crosslinked protein matrices for tissue engineering applications synthesized by multiphoton excitation. J. Biomed. Mater. Res. Part A 71A(2), 359–368 (2004)

    Article  Google Scholar 

  6. M. Deubel, G. von Freymann, M. Wegener, S. Pereira, K. Busch, C. Soukoulis, Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nat. Mater. 3(7), 444–447 (2004)

    Article  ADS  Google Scholar 

  7. R.J. DeVoe, H.W. Kalweit, C.A. Leatherdale, T.R. Williams, Voxel shapes in two-photon microfabrication. in International Symposium on Optical Science and Technology. International Society for Optics and Photonics (2003) pp. 310–316

  8. S. Engelhardt, E. Hoch, K. Borchers, W. Meyer, H. Kruger, G. Tovar, A. Gillner, Fabrication of 2d protein microstructures and 3d polymer-protein hybrid microstructures by two-photon polymerization. Biofabrication 3(2), 025,003 (2011)

    Article  Google Scholar 

  9. S. Engelhardt, J. Tempeler, A. Gillner, M. Wehner, The voxel onset time as a method for the evaluation of two photon lithography. J. Laser Micro Nanoeng. 8(3), 230–233 (2013)

    Article  Google Scholar 

  10. J. Fischer, J.B. Mueller, J. Kaschke, T.J. Wolf, A.N. Unterreiner, M. Wegener, Three-dimensional multi-photon direct laser writing with variable repetition rate. Opt. Express 21(22), 26244–26260 (2013)

    Article  ADS  Google Scholar 

  11. S. Hell, G. Reiner, C. Cremer, E. Stelzer, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive-index. J. Microsc. 169, 391–405 (1993)

    Article  Google Scholar 

  12. B. Kaehr, J. Shear, Multiphoton fabrication of chemically responsive protein hydrogels for microactuation. Proc. Nat. Acad. Sci. USA 105(26), 8850–8854 (2008)

    Article  ADS  Google Scholar 

  13. B. Kaehr, J. Shear, High-throughput design of microfluidics based on directed bacterial motility. Lab Chip 9(18), 2632–2637 (2009)

    Article  Google Scholar 

  14. C. Khripin, C. Brinker, B. Kaehr, Mechanically tunable multiphoton fabricated protein hydrogels investigated using atomic force microscopy. Soft. Matter. 6(12), 2842–2848 (2010)

    Article  ADS  Google Scholar 

  15. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. Franz, G. von Freymann, M. Wegener, M. Bastmeyer, Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv. Mater. 22(8), 868–871 (2010)

    Article  Google Scholar 

  16. F. Klein, T. Striebel, J. Fischer, Z. Jiang, C. Franz, G. von Freymann, M. Wegener, M. Bastmeyer, Tailored three-dimensional microstructure scaffolds for cell culture. Eur. J. Cell Biol. 89, 57–57 (2010)

    Google Scholar 

  17. W. Meyer, S. Engelhardt, E. Novosel, B. Elling, Soft polymers for building up small and smallest blood supplying systems by stereolithography. J. Funct. Biomater. 3, 257–268 (2012)

    Article  Google Scholar 

  18. J.B. Mueller, J. Fischer, F. Mayer, M. Kadic, M. Wegener, Polymerization kinetics in three-dimensional direct laser writing. Adv. Mater. 26(38), 6566–6571 (2014)

    Article  Google Scholar 

  19. J.B. Mueller, J. Fischer, M. Wegener, In-situ measurement of the intrinsic polymerization time during three-dimensional direct laser writing. in CLEO: Science and Innovations. Optical Society of America (2014), pp. STh1J–4

  20. A. Ovsianikov, A. Deiwick, S. Van Vlierberghe, P. Dubruel, L. Moller, G. Drager, B. Chichkov, Laser fabrication of three-dimensional cad scaffolds from photosensitive gelatin for applications in tissue engineering. Biomacromolecules 12(4), 851–858 (2011)

    Article  Google Scholar 

  21. A. Ovsianikov, S. Xiao, M. Farsari, M. Vamvakaki, C. Fotakis, B. Chichkov, Shrinkage of microstructures produced by two-photon polymerization of zr-based hybrid photosensitive materials. Opt. Express 17(4), 2143–2148 (2009)

    Article  ADS  Google Scholar 

  22. S. Schlie, A. Ngezahayo, A. Ovsianikov, T. Fabian, H. Kolb, H. Haferkamp, B. Chichkov, Three-dimensional cell growth on structures fabricated from ormocer (r) by two-photon polymerization technique. J. Biomater. Appl. 22(3), 275–287 (2007)

    Article  Google Scholar 

  23. J. Serbin, A. Egbert, A. Ostendorf, B. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, M. Popall, Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics. Opt. Lett. 28(5), 301–303 (2003)

    Article  ADS  Google Scholar 

  24. M. Stoneman, M. Fox, C. Zeng, V. Raicu, Real-time monitoring of two-photon photopolymerization for use in fabrication of microfluidic devices. Lab Chip 9(6), 819–827 (2009)

    Article  Google Scholar 

  25. H. Sun, S. Matsuo, H. Misawa, Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin. Appl. Phys. Lett. 74(6), 786–788 (1999)

    Article  ADS  Google Scholar 

  26. H. Sun, K. Takada, M. Kim, K. Lee, S. Kawata, Scaling laws of voxels in two-photon photopolymerization nanofabrication. Appl. Phys. Lett. 83(6), 1104–1106 (2003)

    Article  ADS  Google Scholar 

  27. P. Tayalia, C. Mendonca, T. Baldacchini, D. Mooney, E. Mazur, 3d cell-migration studies using two-photon engineered polymer scaffolds. Adv. Mater. 20(23), 4494–4498 (2008)

    Article  Google Scholar 

  28. P. Torok, P. Varga, G. Booker, Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive-indexes - structure of the electromagnetic-field. 1. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12(10), 2136–2144 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  29. P. Torok, P. Varga, G. Nemeth, Analytical solution of the diffraction integrals and interpretation of wave-front distortion when light is focused through a planar interface between materials of mismatched refractive-indexes. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 12(12), 2660–2671 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  30. H. Williams, Z. Luo, S. Kuebler, Effect of refractive index mismatch on multi-photon direct laser writing. Opt. Express 20(22), 25030–25040 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Andreas Offenhäusser and Jochen Stollenwerk for fruitful discussions. This work is funded by the FP7 Projekt ArtiVasc 3D (263416). The above results were acquired using facilities and devices funded by the Federal State of North Rhine-Westphalia and the European Union within the EFRE-program “Regionale Wettbewerbsfähigkeit und Beschäftigung 2007–2013” under Grant Number 290047022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wehner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Engelhardt, S., Tempeler, J. & Wehner, M. The voxel onset time as an in situ method to evaluate focal position effects on two-photon-induced lithography. Appl. Phys. A 121, 513–519 (2015). https://doi.org/10.1007/s00339-015-9449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9449-9

Keywords

Navigation