Skip to main content
Log in

Control of charge dynamics by blending ZnO nanoparticles with poly(3-hexylthiophene) for efficient hybrid ZnO nanorods/polymer solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photovoltaic performances of hybrid ZnO nanorods/polymer solar cells have been improved by controlling their charge dynamics through addition of ZnO nanoparticles into poly(3-hexylthiophene) (P3HT) photoactive layer. The inter-rod space of ZnO nanorod substrates is completely filled with the solution-processed ZnO nanoparticles/P3HT blends, forming homogeneous junction among the components. The optimum PCE of 1.020 % has been achieved from the device with 13 vol % ZnO nanoparticles loaded. The enhancement in external quantum efficiency has been also observed, indicating the improved excitons separation at the ZnO/P3HT interface. The information on charge dynamics in the system has been investigated by electrochemical impedance spectroscopy. It has been found that the additional space-charge layer formed at the ZnO nanoparticles–contact electrode interface is a reason behind the improvement of open-circuit voltage. Moreover, the formation of ZnO nanoparticles domain extending across the active layer and the percolation path for charge carriers promotes charge transport by reducing transit time of the carriers, extending charge carrier lifetime and enhancing the charge transfer at the ZnO/P3HT interface. Interestingly, it has been found that charge transport in the devices does not limit the device performances, even for the 400-nm-thick active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K.P. Musselman, S. Albert-Seifried, R.L.Z. Hoye, A. Sadhanala, D. Muñoz-Rojas, J.L. MacManus-Driscoll, R.H. Friend, Adv. Funct. Mater. 24, 3562 (2014)

    Article  Google Scholar 

  2. G. Divitini, O. Stenzel, A. Ghadirzadeh, S. Guarnera, V. Russo, C.S. Casari, A.L. Bassi, A. Petrozza, F. Di Fonzo, V. Schmidt, C. Ducati, Adv. Funct. Mater. 24, 3043 (2014)

    Article  Google Scholar 

  3. D.-W. Chen, T.-C. Wang, W.-P. Liao, J.-J. Wu, Acs. Appl. Mater. Inter. 5, 8359 (2013)

    Article  Google Scholar 

  4. T. Rakshit, S.P. Mondal, I. Manna, S.K. Ray, Acs. Appl. Mater. Inter. 4, 6085 (2012)

    Article  Google Scholar 

  5. M.-J. Jin, J. Jo, J.-H. Kim, K.-S. An, M.S. Jeong, J. Kim, J.-W. Yoo, Acs. Appl. Mater. Inter. 6, 11649 (2014)

    Article  Google Scholar 

  6. S. Hernández, V. Cauda, A. Chiodoni, S. Dallorto, A. Sacco, D. Hidalgo, E. Celasco, C.F. Pirri, Acs. Appl. Mater. Inter. 6, 12153 (2014)

    Article  Google Scholar 

  7. L. Vayssieres, Adv. Mater. 15, 464 (2003)

    Article  Google Scholar 

  8. L.E. Greene, M. Law, D.H. Tan, M. Montano, J. Goldberger, G. Somorjai, P.D. Yang, Nano Lett. 5, 1231 (2005)

    Article  ADS  Google Scholar 

  9. J.B. Baxter, C.A. Schmuttenmaer, J. Phys. Chem. B 110, 25229 (2006)

    Article  Google Scholar 

  10. A.L. Briseno, T.W. Holcombe, A.I. Boukai, E.C. Garnett, S.W. Shelton, J.J.M. Frechet, P.D. Yang, Nano Lett. 10, 334 (2010)

    Article  ADS  Google Scholar 

  11. B.Q. Sun, E. Marx, N.C. Greenham, Nano Lett. 3, 961 (2003)

    Article  ADS  Google Scholar 

  12. A.D. Rao, S. Karalatti, T. Thomas, P.C. Ramamurthy, Acs. Appl. Mater. Inter. 6, 16792 (2014)

    Article  Google Scholar 

  13. D.Q. Bi, F. Wu, W.J. Yue, Y. Guo, W. Shen, R.X. Peng, H.A. Wu, X.K. Wang, M.T. Wang, J. Phys. Chem. C 114, 13846 (2010)

    Article  Google Scholar 

  14. F. Wu, Q. Cui, Z. Qiu, C. Liu, H. Zhang, W. Shen, M. Wang, Acs. Appl. Mater. Inter. 5, 3246 (2013)

    Article  Google Scholar 

  15. Y.Z. Hao, J. Pei, Y. Wei, Y.H. Cao, S.H. Jiao, F. Zhu, J.J. Li, D.H. Xu, J. Phys. Chem. C 114, 8622 (2010)

    Article  Google Scholar 

  16. Y.Y. Lin, Y.Y. Lee, L.W. Chang, J.J. Wu, C.W. Chen, Appl. Phys. Lett. 94, 063308 (2009)

    Article  ADS  Google Scholar 

  17. D.C. Olson, S.E. Shaheen, R.T. Collins, D.S. Ginley, J. Phys. Chem. C 111, 16670 (2007)

    Article  Google Scholar 

  18. B.D. Yuhas, P. Yang, J. Am. Chem. Soc. 131, 3756 (2009)

    Article  Google Scholar 

  19. J. Huang, Z. Yin, Q. Zheng, Energ Environ Sci 4, 3861 (2011)

    Article  Google Scholar 

  20. P. Ruankham, L. Macaraig, T. Sagawa, H. Nakazumi, S. Yoshikawa, J. Phys. Chem. C 115, 23809 (2011)

    Article  Google Scholar 

  21. P. Ruankham, S. Yoshikawa, T. Sagawa, Phys. Chem. Chem. Phys. 15, 9516 (2013)

    Article  Google Scholar 

  22. P.E. Shaw, A. Ruseckas, I.D.W. Samuel, Adv. Mater. 20, 3516 (2008)

    Article  Google Scholar 

  23. M.-J. Jin, J. Jo, J.-H. Kim, K.-S. An, M.S. Jeong, J. Kim, J.-W. Yoo, Acs. Appl. Mater. Inter. 6, 11649 (2014)

    Article  Google Scholar 

  24. L. Dou, J. You, Z. Hong, Z. Xu, G. Li, R.A. Street, Y. Yang, Adv. Mater. 25, 6642 (2013)

    Article  Google Scholar 

  25. Y.-Y. Lin, T.-H. Chu, S.-S. Li, C.-H. Chuang, C.-H. Chang, W.-F. Su, C.-P. Chang, M.-W. Chu, C.-W. Chen, J. Am. Chem. Soc. 131, 3644 (2009)

    Article  Google Scholar 

  26. A.J. Heeger, Adv. Mater. 26, 10 (2014)

    Article  Google Scholar 

  27. J. Bisquert, F. Fabregat-Santiago, I. Mora-Seró, G. Garcia-Belmonte, S. Giménez, J. Phys. Chem. C 113, 17278 (2009)

    Article  Google Scholar 

  28. T. Ripolles-Sanchis, A. Guerrero, J. Bisquert, G. Garcia-Belmonte, J. Phys. Chem. C 116, 16925 (2012)

    Article  Google Scholar 

  29. B. Arredondo, B. Romero, G. Del Pozo, M. Sessler, C. Veit, U. Würfel, Sol. Energ. Mat. Sol. C 128, 351 (2014)

    Article  Google Scholar 

  30. P. Yang, D.F. Zeigler, K.C. Bryant, T.R. Martin, D.R. Gamelin, C.K. Luscombe, J. Mater. Chem. C 2, 4922 (2014)

    Article  Google Scholar 

  31. G. Garcia-Belmonte, A. Guerrero, J. Bisquert, J. Phys. Chem. Lett. 4, 877 (2013)

    Article  Google Scholar 

  32. M. Shin, H. Kim, J. Park, S. Nam, K. Heo, M. Ree, C.S. Ha, Y. Kim, Adv. Funct. Mater. 20, 748 (2010)

    Article  Google Scholar 

  33. G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, Y. Yang, Adv. Funct. Mater. 17, 1636 (2007)

    Article  Google Scholar 

  34. Y.-C. Huang, S.-Y. Chuang, M.-C. Wu, H.-L. Chen, C.-W. Chen, W.-F. Su, J. Appl. Phys. 106, 034506 (2009)

    Article  ADS  Google Scholar 

  35. B.R. Saunders, J. Colloid. Interf. Sci. 369, 1 (2012)

    Article  Google Scholar 

  36. T. Ma, M. Guo, M. Zhang, Y.J. Zhang, X.D. Wang, Nanotechnology 18, 035605 (2007)

    Article  ADS  Google Scholar 

  37. S.Y. Shao, F.M. Liu, Z.Y. Xie, L.X. Wang, J. Phys. Chem. C 114, 9161 (2010)

    Article  Google Scholar 

  38. W.J.E. Beek, M.M. Wienk, M. Kemerink, X.N. Yang, R.A.J. Janssen, J. Phys. Chem. B 109, 9505 (2005)

    Article  Google Scholar 

  39. D.Z. Sun, M.H. Wong, L.Y. Sun, Y.T. Li, N. Miyatake, H.J. Sue, J. Sol-Gel Sci. Techn. 43, 237 (2007)

    Article  Google Scholar 

  40. D.C. Olson, J. Piris, R.T. Collins, S.E. Shaheen, D.S. Ginley, Thin Solid Films 496, 26 (2006)

    Article  ADS  Google Scholar 

  41. D.C. Olson, Y.J. Lee, M.S. White, N. Kopidakis, S.E. Shaheen, D.S. Ginley, J.A. Voigt, J.W.P. Hsu, J. Phys. Chem. C 111, 16640 (2007)

    Article  Google Scholar 

  42. G.A.H. Wetzelaer, M. Kuik, M. Lenes, P.W.M. Blom, Appl. Phys. Lett. 99, 153306 (2011)

    Article  Google Scholar 

  43. M.D. Perez, C. Borek, S.R. Forrest, M.E. Thompson, J. Am. Chem. Soc. 131, 9281 (2009)

    Article  Google Scholar 

  44. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Phys. Chem. Chem. Phys. 13, 9083 (2011)

    Article  Google Scholar 

  45. T.-W. Zeng, C.-C. Ho, Y.-C. Tu, G.-Y. Tu, L.-Y. Wang, W.-F. Su, Langmuir 27, 15255 (2011)

    Article  Google Scholar 

  46. E.A. Meulenkamp, J. Phys. Chem. B 103, 7831 (1999)

    Article  Google Scholar 

  47. B. Sun, H. Sirringhaus, Nano Lett. 5, 2408 (2005)

    Article  ADS  Google Scholar 

  48. S.A. Choulis, Y. Kim, J. Nelson, D.D.C. Bradley, M. Giles, M. Shkunov, I. McCulloch, Appl. Phys. Lett. 85, 3890 (2004)

    Article  ADS  Google Scholar 

  49. G. Dennler, A.J. Mozer, G. Juska, A. Pivrikas, R. Osterbacka, A. Fuchsbauer, N.S. Sariciftci, Org. Electron. 7, 229 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. Rika Hagiwara of Graduate School of Energy Science, Kyoto University, for the use of EIS. This research was financially supported by the Research Administration Center of Chiang Mai University, Thailand, and the Global Center of Excellence (GCOE) Program of Kyoto University from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pipat Ruankham.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruankham, P., Choopun, S. & Sagawa, T. Control of charge dynamics by blending ZnO nanoparticles with poly(3-hexylthiophene) for efficient hybrid ZnO nanorods/polymer solar cells. Appl. Phys. A 121, 301–310 (2015). https://doi.org/10.1007/s00339-015-9444-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9444-1

Keywords

Navigation