Skip to main content
Log in

Electrical percolation of fibre mixtures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the development of conductive threads for wearable electronics, nonconductive cotton fibres and conductive stainless steel fibres are mixed to produce composite yarns at a wide range of stainless steel fibre weight fractions. The electrical resistance of the composite yarns is measured at different probe span lengths, ranging from 0.5 to 10 L ss (L ss = 50 mm is the average length of stainless steel fibres). The percolation threshold and critical exponent are determined for each span length. The critical exponent followed a decreasing trend from 1.87 to 1.17 as the span length was increased. When the conductive fibre loading was expressed in terms of conductive fibre volume fraction, the percolation critical exponent showed a similar trend of change with probe span length. Such a dependence of percolation critical exponent on resistance probe span length has not been previously reported for conductive particle-filled polymer composites, probably because the probe span length used in resistance measurement is orders of magnitude larger than the dimension of the conductive fillers in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.V. Kyrylyuk, M.C. Hermant, T. Schilling, B. Klumperman, C.E. Koning, P. van der Schoot, Nat. Nanotechnol. 6(6), 364 (2011)

    Article  ADS  Google Scholar 

  2. A. Behnam, J. Guo, A. Ural, J. Appl. Phys. 102(4), 044313 (2007)

    Article  ADS  Google Scholar 

  3. D. Fangming, J.E. Fischer, K.I. Winey, Phys. Rev. B 72(12), 121404 (2005)

    Article  ADS  Google Scholar 

  4. W. Bauhofer, J.Z. Kovacs, Compos. Sci. Technol. 69(10), 1486 (2009)

    Article  Google Scholar 

  5. R.M. Mutiso, K.I. Winey, Prog. Polym. Sci. 40, 63 (2015)

    Article  Google Scholar 

  6. S.I. White, R.M. Mutiso, P.M. Vora, D. Jahnke, S. Hsu, J.M. Kikkawa, J. Li, J.E. Fischer, K.I. Winey, Adv. Funct. Mater. 20(16), 2709 (2010)

    Article  Google Scholar 

  7. R.H. Otten, P. van der Schoot, J. Chem. Phys. 134(9), 094902 (2011)

    Article  ADS  Google Scholar 

  8. R.H.J. Otten, P. van der Schoot, Phys. Rev. Lett. 103(22), 225704 (2009)

    Article  ADS  Google Scholar 

  9. D.R. Cox, J. Text. Inst. Trans. 45(2), T113 (1954)

    Article  Google Scholar 

  10. G. Cho, K. Jeong, M. Paik, Y. Kwun, M. Sung, IEEE Sens. J. 11(12), 3183 (2011)

    Article  Google Scholar 

  11. R. Wijesiriwardana, IEEE Sens. J. 6(3), 571 (2006)

    Article  Google Scholar 

  12. C.-T. Huang, C.-F. Tang, M.-C. Lee, S.-H. Chang, Sens. Actuators, A 148(1), 10 (2008)

    Article  Google Scholar 

  13. K.B. Cheng, T.W. Cheng, K.C. Lee, T.H. Ueng, W.H. Hsing, Compos. A Appl. Sci. Manuf. 34(10), 971 (2003)

    Article  Google Scholar 

  14. P.C. Patel, D.A. Vasavada, H.R. Mankodi, in 2012 IEEE International Conference on Power System Technology (POWERCON) (IEEE, Auckland, 2012), p. 1

  15. V. Šafářová, J. Militký, J. Mater. Sci. Eng. B 2(2), 197 (2012)

    Google Scholar 

  16. M. Miao, Carbon 49(12), 3755 (2011)

    Article  Google Scholar 

  17. B.E. Kilbride, J.N. Coleman, J. Fraysse, P. Fournet, M. Cadek, A. Drury, S. Hutzler, S. Roth, W.J. Blau, J. Appl. Phys. 92(7), 4024 (2002)

    Article  ADS  Google Scholar 

  18. J.G. Martindale, J. Text. Inst. Trans. 36, 35 (1945)

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Phil Henry and Mark Freijah (CSIRO) for assistance in yarn productions and Colin Veitch (CSIRO) for assistance in optical microscopy, and Huaying Yin (Deakin University) for preparing the yarn cross-sections for imaging. We acknowledge the financial support from China Scholarship Council (201406630052) that enabled JX to carry out this work at CSIRO in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Menghe Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Gordon, S., Long, H. et al. Electrical percolation of fibre mixtures. Appl. Phys. A 121, 589–595 (2015). https://doi.org/10.1007/s00339-015-9436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9436-1

Keywords

Navigation