Skip to main content
Log in

Synthesis of rattle-type Ag@Al2O3 nanostructure by laser-induced heating of Ag and Al nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A simple and flexible method has been presented for the fabrication of rattle-type Ag@Al2O3 nanostructures in water and polyvinyl pyrrolidone polymer solution based on laser-induced heating of mixture of silver (Ag) and aluminium (Al) nanoparticles by 532-nm laser. Silver and aluminium nanoparticles were prepared by pulsed laser ablation in liquid using same laser wavelength. The transmission electron micrographs revealed morphological changes from sintered-/intermediate-type structure in water medium and jointed structure (heterostructures) in polymer solution to rattle-type structure with changing irradiation time. At longer irradiation time, the Kirkendall effect becomes dominant due to diffusion rate mismatch between the two metals at the interface and facilitates the formation of porous alumina shell over silver core. The morphology and chemical composition of the nanostructures were characterized by transmission electron micrograph, high-resolution transmission electron micrograph and energy-dispersive X-ray analysis. The melting response of alumina (Al2O3), aluminium and silver nanoparticles with 532-nm laser wavelength provides novel pathway for rattle-type formation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Scheme 2
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhao, L. Jiang, topic. Adv. Mater. 21, 1 (2009)

    MATH  Google Scholar 

  2. R. Nakamura, D. Tokozakura, H. Nakajima, J. Appl. Phys. 101, 074303 (2007)

    Article  ADS  Google Scholar 

  3. J. Chen, R. Zhang, L. Han, B. Tu, D. Zhao, Nano Res. 6, 871 (2013)

    Article  ADS  Google Scholar 

  4. B. Guan, T. Wang, S. Zeng, X. Wang, D. An, D. Wang, Y. Cao, D. Ma, Y. Liu, Q. Huo, Nano Res. (2013). doi:10.1007/s12274-013-0392-9

    Google Scholar 

  5. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004)

    Article  ADS  Google Scholar 

  6. J. Zhou, C. Tang, B. Cheng, J. Yu, M. Jaroniec, Appl. Mater. Interfaces 4, 2174 (2012)

    Article  Google Scholar 

  7. M.E. Davis, Nature 417, 813 (2002)

    Article  ADS  Google Scholar 

  8. V. Valtchev, L. Tosheva, Chem. Rev. 113, 6734 (2013)

    Article  Google Scholar 

  9. X. Fang, Z. Liu, M.-F. Hsieh, M. Chen, P. Liu, C. Chen, N. Zheng, ACS Nano 6, 4434 (2012)

    Article  Google Scholar 

  10. L. Wang, T. Fei, J. Deng, Z. Lou, R. Wang, T. Zhang, J. Mat. Chem. 22, 18111 (2012)

    Article  Google Scholar 

  11. J. Li, X. Liang, J.B. Joo, I. Lee, Y. Yin, F. Zaera, J. Phys. Chem. C 117, 20043 (2013)

    Article  Google Scholar 

  12. Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin, Acc. Chem. Res. 46, 1816 (2013)

    Article  Google Scholar 

  13. Y. Yang, J. Liu, X. Li, X. Liu, Q. Yang, Chem. Mater. 23, 3676 (2011)

    Article  Google Scholar 

  14. B. Stephan, M. Fumitaka, J. Phys. Chem. C 115, 4985 (2011)

    Article  Google Scholar 

  15. S. Ikurumi, S. Okada, K. Nakatsuka, T. Kamegawa, K. Mori, H. Yamashita, J. Phys. Chem. C 118, 575 (2014)

    Article  Google Scholar 

  16. J.A. Rodriguez, M. Kuhn, J. Hrbek, J. Phys. Chem. 100, 18240 (1996)

    Article  Google Scholar 

  17. V. Evangelista, B. Acosta, S.S. Miridonov, E. Smolentseva, S. Fuentes, A. Simakov, Appl. Catal. B Environ. 518, 166–167 (2015)

    Google Scholar 

  18. R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 846 (2008)

    Article  Google Scholar 

  19. N. Toshima, T. Yonezawa, New J. Chem. 22, 1179 (1998)

    Article  Google Scholar 

  20. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013)

    Article  Google Scholar 

  21. S. Barcikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15, 3022 (2013)

    Article  Google Scholar 

  22. H. Zhang, G. Duan, Y. Li, X. Xu, Z. Dai, W. Cai, Cryst. Growth Des. 12, 2646 (2012)

    Article  Google Scholar 

  23. P. Liu, Y. Liang, X. Lin, C. Wang, G. Yang, ACS Nano 5, 4748 (2011)

    Article  Google Scholar 

  24. K.Y. Niu, J. Yang, S.A. Kulinich, J. Sun, H. Li, X.W. Du, J. Am. Chem. Soc. 132, 9814 (2010)

    Article  Google Scholar 

  25. S.-H. Tsai, Y.-H. Liu, P.-L. Wu, C.-S. Yeh, J. Mater. Chem. 13, 978 (2003)

    Article  Google Scholar 

  26. R. Singh, R.K. Soni, J. Nanosci. Lett. 3, 11 (2013)

    Article  ADS  Google Scholar 

  27. H.J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, U. Gosele, Nano Lett. 7, 993 (2007)

    Article  ADS  Google Scholar 

  28. M. Zhen, D. Sheng, ACS Catal. 1, 805 (2011)

    Article  Google Scholar 

  29. H.M. Chen, R.S. Liu, J. Phys. Chem. C 115, 3513 (2011)

    Article  Google Scholar 

  30. S. Lee, J.H. Shin, M.Y. Choi, J. Nanopart. Res. 15, 1473 (2013)

    Article  Google Scholar 

  31. L. Samain, A. Jaworski, M. Edén, D.M. Ladd, D.-K. Seo, F.J. Garcia-Garcia, U. Haussermann, J. Solid State Chem. 217, 1 (2014)

    Article  ADS  Google Scholar 

  32. S.A. Al-Mamun, R. Nakajima, T. Ishigaki, J. Colloid Interface Sci. 392, 172 (2013)

    Article  Google Scholar 

  33. G. Bajaj, R.K. Soni, J. Nanopart. Res. 12, 2597 (2010)

    Article  Google Scholar 

  34. L. Zhang, D.A. Blom, H. Wang, Chem. Mater. 23, 4587 (2011)

    Article  Google Scholar 

  35. Y. Li, X.-Y. Yang, J. Rooke, G.V. Tendeloo, B.-L. Su, J. Colloid Interface Sci. 348, 303 (2010)

    Article  Google Scholar 

  36. D.-Y. Liu, S.-Y. Ding, H.-X. Lin, B.-J. Liu, Z.-Z. Ye, F.-R. Fan, B. Ren, Z.-Q. Tian, J. Phys. Chem. C 116, 4477 (2012)

    Article  Google Scholar 

  37. S.Z. Khan, Z. Liu, L. Li, Appl. Phys. A 101, 781 (2010)

    Article  ADS  Google Scholar 

  38. J. Wilcoxon, J. Phys. Chem. B 113, 2647 (2009)

    Article  Google Scholar 

  39. T. Salminen, M. Honkanen, T. Niemi, Phys. Chem. Chem. Phys. 15, 3047 (2013)

    Article  Google Scholar 

  40. F.-D. Mai, C.-C. Yu, Y.-C. Liu, K.-H. Yang, M.-Y. Juang, J. Phys. Chem. C 115, 13660 (2011)

    Article  Google Scholar 

  41. Z. Peng, B. Spliethoff, B. Tesche, T. Walther, K. Kleinermanns, J. Phys. Chem. B 110, 2549 (2006)

    Article  Google Scholar 

  42. I. Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, J. Optoelectron. Adv. Mater. 10, 3177 (2008)

    Google Scholar 

  43. R.J. Rothenberg, G. Koren, Appl. Phys. Lett. 44, 664 (1984)

    Article  ADS  Google Scholar 

  44. N.J. Hogan, A.S. Urban, C. Ayala-Orozco, A. Pimpinelli, P. Nordlander, N.J. Halas, Nano Lett. 2014. doi:10.1021/nl5016975

  45. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F.J.G. de Abajo, P. Nordlander, N.J. Halas, Nano Lett. 13, 1736 (2013)

    Google Scholar 

  46. R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, E. Ehret, M. Roumie, B. Nsouli, B. Jacquier, J.C. Bertolini, J. Nanopart. Res. 12, 3123 (2010)

    Article  Google Scholar 

  47. L. Zhang, H. Jing, G. Boisvert, J.Z. He, H. Wang, ACS Nano 6, 3514 (2012)

    Article  Google Scholar 

  48. H. Yu, M. Chen, P.M. Rice, S.X. Wang, R.L. White, S. Sun, Nano Lett. 5, 379 (2005)

    Article  ADS  Google Scholar 

  49. R. Huang, Y.-H. Wen, Z.-Z. Zhu, S.-G. Sun, J. Phys. Chem. C 116, 8664 (2012)

    Article  Google Scholar 

  50. W.H. Qi, S.T. Lee, J. Phys. Chem. C 114, 9580 (2010)

    Article  Google Scholar 

  51. R. Gaudoin, W.M.C. Foulkes, G. Rajagopal, J. Phys. Condens. Matter 14, 8787 (2002)

    Article  ADS  Google Scholar 

  52. I. Vladoiu, M. Stafe, C. Negutu, I.M. Popescu, J. Optoelectron. Adv. Mater. 10, 3177 (2008)

    Google Scholar 

  53. M.A. Trunov, S.M. Umbrajkar, M. Schoenitz, J.T. Mang, E.L. Dreizin, J. Phys. Chem. B 110, 13094 (2006)

    Article  Google Scholar 

  54. V.I. Levitas, M.L. Pantoya, G. Chauhan, I.J. Rivero, Phys. Chem. C 113, 14088 (2009)

    Article  Google Scholar 

  55. J. Lee, J. Lee, T. Tanaka, H. Mori, Nanotechnology 20, 475706 (2009)

    Article  ADS  Google Scholar 

  56. M.B. Cortie, A.M. McDonagh, Chem. Rev. 111, 3713 (2011)

    Article  Google Scholar 

  57. R. Huang, Y.-H. Wen, Z.-Z. Zhu, S.-G. Sun, J. Phys. Chem. C 116, 8664 (2012)

    Article  Google Scholar 

  58. T. Tsuji, T. Yahata, M. Yasutomo, K. Igawa, M. Tsuji, Y. Ishikawa, N. Koshizaki, Phys. Chem. Chem. Phys. 15, 3099 (2013)

    Article  Google Scholar 

  59. R. Singh, R.K. Soni, Appl. Phys. A (2014). doi:10.1007/s00339-014-8487-z

    Google Scholar 

  60. A. Baladi, R.S. Mamoory, Appl. Surf. Sci. 256, 7559 (2010)

    Article  ADS  Google Scholar 

  61. Y. Ekinci, H.H. Solak, J.F. Loffler, J. Appl. Phys. 104, 083107 (2008)

    Article  ADS  Google Scholar 

  62. E. Stratakis, M. Barberoglou, C. Fotakis, G. Viau, C. Garcia, G.A. Shafeev, Opt. Express 17, 12650 (2009)

    Article  ADS  Google Scholar 

  63. Y. Chen, H. Wu, Z. Li, P. Wang, L. Yang, Y. Fang, Plasmonics 7, 509 (2012)

    Article  Google Scholar 

  64. H. Han, Y. Fanga, Appl. Phys. Lett. 92, 023116 (2008)

    Article  ADS  Google Scholar 

  65. A.M. Goodman, Y. Cao, C. Urban, O. Neumann, C. Ayala-Orozco, M.W. Knight, A. Joshi, P. Nordlander, N.J. Halas, ACS Nano 8, 3222 (2014)

    Article  Google Scholar 

  66. N.D. Subramanian, J. Moreno, J.J. Spivey, S.S.R.C. Kumar, J. Phys. Chem. C 115, 14500 (2011)

    Article  Google Scholar 

  67. M.D.D. Thi, T.T.L. Thi, F.-B. Thi, C.D. Mau, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 015009 (2011)

    Article  ADS  Google Scholar 

  68. S.Y. Kim, C.F. Zukoski, Langmuir 27, 10455 (2011)

    Article  Google Scholar 

  69. T. Tsuji, M. Nakanishi, T. Mizuki, S. Ozono, M. Tsuji, Y. Tsuboi, Sci. Adv. Mat. 4, 391 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge support received from TEM and HRTEM facilities at IIT Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Soni, R.K. Synthesis of rattle-type Ag@Al2O3 nanostructure by laser-induced heating of Ag and Al nanoparticles. Appl. Phys. A 121, 261–271 (2015). https://doi.org/10.1007/s00339-015-9429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9429-0

Keywords

Navigation