Skip to main content
Log in

Spectral control of nanodiamond using dressed photon–phonon etching

  • Invited Paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The luminescence of a nitrogen-vacancy (NV) center in a nanodiamond (ND) is of great interest because of its features, especially in the field of nanophotonics. When an NV center in an ND is located in the vicinity of the surface, the emission is often disturbed by any surface defects, resulting in non-radiative recombination. In this work, we performed dressed photon–phonon (DPP) etching of the NDs, and found that the size of the NDs decreased, while the cathodoluminescence (CL) intensity increased. We assume that this increase in the CL intensity originates from the removal of the surface protrusions and/or defects by DPP etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A.T. Collins, The characterisation of point defects in diamond by luminescence spectroscopy. Diam. Relat. Mater. 1, 457–469 (1992)

    Article  ADS  Google Scholar 

  2. V.S. Vavilov, Investigation of the cathodoluminescence of epitaxial diamond films. Sov. Phys. Semicond. 14, 1078 (1980)

    Google Scholar 

  3. A.T. Collins, M. Kamo, Y. Sato, A spectroscopic study of optical centers in diamond grown by microwave-assisted chemical vapor deposition. J. Mater. Res. 5, 2507–2514 (1990)

    Article  ADS  Google Scholar 

  4. N. Mizuochi et al., Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012)

    Article  ADS  Google Scholar 

  5. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Borczyskowski, Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276, 2012–2014 (1997)

    Article  Google Scholar 

  6. C.-C. Fu et al., Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc. Natl. Acad. Sci. 104, 727–732 (2007)

    Article  ADS  Google Scholar 

  7. T. Yatsui, K. Hirata, W. Nomura, Y. Tabata, M. Ohtsu, Realization of an ultra-flat silica surface with angstrom-scale average roughness using nonadiabatic optical near-field etching. Appl. Phys. B 93, 55–57 (2008)

    Article  ADS  Google Scholar 

  8. T. Yatsui et al., Polarization-controlled dressed-photon–phonon etching of patterned diamond structures. Phys. Status Solidi (a) 211, 2339–2342 (2014)

    Article  Google Scholar 

  9. N.S. Norberg, D.R. Gamelin, Influence of surface modification on the luminescence of colloidal ZnO nanocrystals. J. Phys. Chem. B 109, 20810–20816 (2005)

    Article  Google Scholar 

  10. M.J. Sailor, E.J. Lee, Surface chemistry of luminescent silicon nanocrystallites. Adv. Mater. 9, 783–793 (1997)

    Article  Google Scholar 

  11. F. Koch, V. Petrova-Koch, T. Muschik, The luminescence of porous Si: the case for the surface state mechanism. J. Lumin. 57, 271–281 (1993)

    Article  Google Scholar 

  12. M. Ohtsu, Dressed photon technology. Nanophotonics 1, 83–97 (2012)

    Article  ADS  Google Scholar 

  13. Y.Y. Hui et al., Two-photon fluorescence correlation spectroscopy of lipid-encapsulated fluorescent nanodiamonds in living cells. Opt. Express 18, 5896–5905 (2010)

    Article  ADS  Google Scholar 

  14. D. Keilin, E.F. Hartree, Nature 165, 543–544 (1950)

    Article  ADS  Google Scholar 

  15. W. Nomura, M. Ohtsu, T. Yatsui, Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86, 181108 (2005)

    Article  ADS  Google Scholar 

  16. B. Burchard, A.M. Zaitsev, W.R. Fahrner, A.A. Melnikov, A.V. Denisenko, V.S. Varichenko, Diamond based light emitting structures. Diam. Relat. Mater. 3, 947–950 (1994)

    Article  ADS  Google Scholar 

  17. C. Bradac, T. Gaebel, C.I. Pakes, J.M. Say, A.V. Zvyagin, J.R. Rabeau, Effect of the nanodiamond host on a nitrogen-vacancy color-centre emission state. Small 9, 132–139 (2013)

    Article  Google Scholar 

  18. J. Cai, A. Retzker, F. Jelezko, M.B. Plenio, A large-scale quantum simulator on a diamond surface at room temperature. Nat. Phys. 9, 168–173 (2013)

    Article  Google Scholar 

  19. C. Müller et al., Nuclear magnetic resonance spectroscopy with single spin sensitivity. Nat. Commun. 5 (2014). doi:10.1038/ncomms5703.

Download references

Acknowledgments

This work was partially supported by a research grant (Basic Research) from The Asahi Glass Foundation, a Grant-in-Aid for Scientific Research (B) (No. 26286022), the Exploratory Research Program (No. 26630122), Nanotechnology Platform (No. 12024046) of MEXT, bilateral joint research projects of CNR/JSPS, and Core-to-Core Program of JSPS (A. Advanced Research Networks).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yatsui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagumo, R., Brandenburg, F., Ermakova, A. et al. Spectral control of nanodiamond using dressed photon–phonon etching. Appl. Phys. A 121, 1335–1339 (2015). https://doi.org/10.1007/s00339-015-9400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9400-0

Keywords

Navigation