Skip to main content
Log in

Bandwidth enhancement of transformation optics-based cloak with reduced parameters

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 09 June 2015

Abstract

In this paper, dispersive cloak design with broad bandwidth and minimal scattering cross section is proposed by appropriately selecting a radial permeability for each shell in a discretized reduced cloak. The dispersive medium is constructed by artificially varying the inner radius of the cloak with frequency, and this variation results into unique material properties at every frequency. The variation of inner radius of the cloak with frequency is artificial since the actual physical dimension of inner radius remains invariant. The relation between bandwidth and geometrical parameters of cloak is obtained by ensuring that transformation media must satisfy the condition that group velocity must remain less than the speed of light along every direction for a finite frequency range. The proposed cloak provides \(8.9\,\%\) bandwidth with respect to the center frequency for \(50\,\%\) reduction in total scattering cross section, and at the design frequency, the minimum scattering cross section obtained is \(0.266\). The proposed dispersive cloak design is verified by numerical full-wave simulations results which also confirm good cloaking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  2. D. Schurig, J.B. Pendry, D.R. Smith, Opt. Express 14, 9794 (2006)

    Article  ADS  Google Scholar 

  3. Ulf Leonhardt, Science 312, 1777 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  4. U. Leonhardt, T.G. Philbin, Prog. Opt. 53, 69 (2009)

    Article  Google Scholar 

  5. M.R. Forouzeshfard, M. Hosseini Farzad, Plasmonics 10, 125 (2015)

    Article  Google Scholar 

  6. J.S. Mei, Q. Wu, K. Zhang, Appl. Phys. A 108, 1001 (2012)

    Article  ADS  Google Scholar 

  7. A. Rajput, K.V. Srivastava, J. Appl. Phys. 116, 124501 (2014)

    Article  ADS  Google Scholar 

  8. H. Chen, Z. Liang, P. Yao, X. Jiang, H. Ma, C.T. Chan, Phys. Rev. B 76, 241104 (2007)

    Article  ADS  Google Scholar 

  9. P.-S. Kildal, A.A. Kishk, A. Tengs, IEEE Trans. Antennas Propag. 44, 1509 (1996)

    Article  ADS  Google Scholar 

  10. P.-Y. Chen, C. Argyropoulos, A. Alu, Phys. Rev. Lett. 111, 233001 (2013)

    Article  ADS  Google Scholar 

  11. R.-B. Hwang, C.-Y. Chin, AIP Adv. 1, 012112 (2011)

    Article  ADS  Google Scholar 

  12. S. Tretyakov, P. Alitalo, O. Luukkonen, C. Simovski, Phys. Rev. Lett. 103, 103905 (2009)

    Article  ADS  Google Scholar 

  13. M.G. Silveirinha, A. Alu, N. Engheta, Phys. Rev. E 75, 036603 (2007)

    Article  ADS  Google Scholar 

  14. P. Alitalo, H. Kettunen, S. Tretyakov, J. Appl. Phys. 107, 034905 (2010)

    Article  ADS  Google Scholar 

  15. C. Argyropoulos, E. Kallos, Y. Hao, Appl. Phys. A 103, 715 (2011)

    Article  ADS  Google Scholar 

  16. B. Ivsic, Z. Sipus, S. Hrabar, IEEE Trans. Antenna Propag. 57, 1521 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  17. C. Argyropoulos, E. Kallos, Y. Hao, Phys. Rev. E 81, 016611 (2010)

    Article  ADS  Google Scholar 

  18. H. Hashemi, C.-W. Qiu, A.P. McCauley, J.D. Joannopoulos, S.G. Johnson, Phys. Rev. A 86, 013804 (2012)

    Article  ADS  Google Scholar 

  19. C. Craeye, A. Bhattacharya, I.E.E.E. Trans, Antenna Propag. 60, 3516 (2012)

    Article  ADS  Google Scholar 

  20. H. Hashemi, B. Zhang, J.D. Joannopoulous, S.G. Johnson, Phys. Rev. Lett. 104, 253903 (2010)

    Article  ADS  Google Scholar 

  21. B. Zhang, B.-I. Wu, Opt. Lett. 35, 2681 (2010)

    Article  ADS  Google Scholar 

  22. Z. Yu, Y. Feng, X. Xu, J. Zhao, T. Jiang, J. Phys. D Appl. Phys. 44, 185102 (2011)

    Article  ADS  Google Scholar 

  23. B. Ivsic, T. Komljenovic, Z. Sipus, IEEE Trans. Antenna Propag. 58, 3397 (2010)

    Article  ADS  Google Scholar 

  24. B.-I. Popa, S.A. Cummer, Phys. Rev. A 79, 023806 (2009)

    Article  ADS  Google Scholar 

  25. W. Song, R. Shi, X. Sheng, Prog. Res. Lett. 36, 87 (2013)

    Google Scholar 

  26. A.V. Kildishev, W. Cai, U.K. Chettiar, V.M. Shalaev, New J. Phys. 10, 115029 (2008)

    Article  ADS  Google Scholar 

  27. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Science 314, 977 (2006)

    Article  ADS  Google Scholar 

  28. Y.A. Urzhumov, N.B. Kundtz, D.R. Smith, J.B. Pendry, J. Opt. 13, 024002 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajput, A., Srivastava, K.V. Bandwidth enhancement of transformation optics-based cloak with reduced parameters. Appl. Phys. A 120, 663–668 (2015). https://doi.org/10.1007/s00339-015-9235-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9235-8

Keywords

Navigation