Skip to main content
Log in

Co-precipitation synthesis and characterization of faceted MoS2 nanorods with controllable morphologies

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molybdenum disulfide (MoS2) nanopowder has been prepared using a co-precipitation method. This paper describes the thermal effect on the morphology enhancement of MoS2 sphere-like structures into nanorods with a winding structure. For the reduction in precursors, the as-obtained MoS2 nanopowder was calcinated at 250, 400, 600, and 800 °C for 1 h in an N2 environment. The calcined samples were characterized using a particle size analyzer, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with X-ray analysis (EDAX) and transmission electron microscopy, HRTEM and X-ray photoelectron spectroscopy. The results show the MoS2 sphere-like structure with diameter in the range of 50–100 nm and rod-like winding structure with diameter in the range of 20–150 nm, and a few tens of micrometers in length with a high degree of size homogeneity. The FT-IR spectra show the obtained bands at 480 and 900 cm−1 are corresponding to the Mo–S bond and the S–S bond. The TG–DTA curves confirm the thermal stability of the prepared samples. It is observed that the band gap energy for the MoS2 nanorods is lower than for the nanospherical structure MoS2, which leads to achieve high electron and hole recombination rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. I. Tacchini, E. Terrado, A. Anson, M.T. Martınez, Preparation of a TiO2–MoS2 nanoparticle-based composite by solvothermal method with enhanced photoactivity for the degradation of organic molecules in water under UV light. Micro Nano Lett. 6, 932–936 (2011)

    Article  Google Scholar 

  2. M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, A. Seabaugh, The MoS2 nanotubes with defect-controlled electric properties. Nanoscale Res. Lett. 26, 1–6 (2011)

    Google Scholar 

  3. J.G. Kushmerick, P.S. Weiss, Mobile promoters on anisotropic catalysts: nickel on MoS2. J. Phys. Chem. B 102, 10094–10097 (1998)

    Article  Google Scholar 

  4. B. Pourabbas, B. Jamshidi, Preparation of MoS2 nanoparticles by a modified hydrothermal method and the photo-catalytic activity of MoS2/TiO2 hybrids in photo-oxidation of phenol. Chem. Eng. J 138, 55 (2008)

    Article  Google Scholar 

  5. T. Wang, H. Zhu, J. Zhuo, Zh Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, M. Li, Biosensor based on ultra-small MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Anal. Chem. 85, 10289–10295 (2013)

    Article  Google Scholar 

  6. S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater. Sci. 52, 699–913 (2007)

    Article  Google Scholar 

  7. X. Huang, Zh Zeng, H. Zhang, Metal dichalcogenide nanosheets: preparation, properties and applications. Chem. Soc. Rev. 42, 1934–1946 (2013)

    Article  Google Scholar 

  8. B. Visic, R. Dominko, M.K. Gunde, N. Hauptman, S.D. Skapin, M. Remskar, Optical properties of exfoliated MoS2 coaxial nanotubes: analogues of grapheme. Nanoscale Res. Lett. 6, 1–6 (2011)

    Article  Google Scholar 

  9. K.H. Hu, X.G. Hu, X.J. Sun, Morphological effect of MoS2 nanoparticles on catalytic oxidation and vacuum lubrication. Appl. Surf. Sci. 256, 2517–2523 (2010)

    Article  ADS  Google Scholar 

  10. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorff, Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007)

    Article  ADS  Google Scholar 

  11. Y. Yu, Ch. Li, Y. Liu, L. Su, Y. Zhang, L. Cao, Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 31866, 1–6 (2013)

    Google Scholar 

  12. B. Lei, G.R. Li, X.P. Gao, Morphology dependence of molybdenum disulfide transparent counter electrode in dye-sensitized solar cells. J. Mater. Chem. A 2, 3919–3925 (2014)

    Article  Google Scholar 

  13. P. Sun, W. Zhang, X. Hu, L. Yuan, Y. Huang, Synthesis of hierarchical MoS2 and its electrochemical performance as an anode material. Mater. Chem. A 2, 3496–3504 (2014)

    Google Scholar 

  14. C.N.R. Rao, M. Nath, Inorganic nanotubes, (perspective article). Dalton Trans. 1, 1–24 (2003)

    Article  Google Scholar 

  15. V. Iliev, L. Prahov, L. Bilyarska, H. Fischer, G. Schulz-Ekloff, D. Wöhrle, L. Petrov, Oxidation and photooxidation of sulfide and thiosulfate ions catalyzed by transition metal chalcogenides and phthalocyanine complexes. J. Mol. Catal. A Chem. 151, 161–169 (2000)

    Article  Google Scholar 

  16. R. Rosentsveig, A. Gorodnev, N. Feuerstein, H. Friedman, A. Zak, N. Fleischer, J. Tannous, F. Dassenoy, R. Tenne, Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36, 175–182 (2009)

    Article  Google Scholar 

  17. H.H. Chien, K.J. Ma, S.V.P. Vattikuti, ChH Kuo, ChB Huo, ChL Chao, Tribological behavior of MoS2/Au coatings. Thin Solid Films 51, 7532–7534 (2010)

    Article  ADS  Google Scholar 

  18. X. Hu, Tribological properties of molybdenum disulfide nanosheets by monolayer restacking process as additive in liquid paraffin. Ind. Lubr. Tribol. 57, 255–260 (2005)

    Article  Google Scholar 

  19. B. Gao, X. Zhang, Synthesis of MoS2 inorganic fullerene-like nanoparticles by a chemical vapour deposition method. S. Afr. J. Chem. 67, 6–11 (2014)

    Google Scholar 

  20. G. Nagaraju, C.N. Tharamani, G.T. Chandrappa, J. Livage, Hydrothermal synthesis of amorphous MoS2 nanofiber bundles via acidification of ammonium heptamolybdate tetrahydrate. Nanoscale Res. Lett. 2, 461–468 (2007)

    Article  ADS  Google Scholar 

  21. G. Santillo, F.A. Deorsola, S. Bensaid, N. Russo, D. Fino, MoS2 nanoparticle precipitation in turbulent micromixers. Chem. Eng. J. 207–208, 322–328 (2012)

    Article  Google Scholar 

  22. R. Wei, H. Yang, K. Du, W. Fu, Y. Tian, Q. Yu, Sh Liu, M. Li, G. Zou, A facile method to prepare MoS2 with nanoflower-like morphology. Mater. Chem. Phys. 108, 188–191 (2008)

    Article  Google Scholar 

  23. I. Wiesel, H. Arbel, A.A. Yaron, R.P. Biro, J.M. Gordon, D. Feuermann, R. Tenne, Synthesis of WS2 and MoS2 fullerene-like nanoparticles from solid precursors. Nano Res. 2, 416–424 (2009)

    Article  Google Scholar 

  24. F.A. Deorsola, N. Russo, G.A. Blengini, D. Fino, Synthesis, characterization and environmental assessment of nanosized MoS2 particles for lubricants applications. Chem. Eng. J. 195–196, 1–6 (2012)

    Article  Google Scholar 

  25. X.W. Lou, HCh. Zeng, Hydrothermal synthesis of α-MoO3 nanorods via acidification of ammonium heptamolybdate tetrahydrate. Chem. Mater. 14, 4781–4789 (2002)

    Article  Google Scholar 

  26. H. Akram, C.M. Pedrero, E.G. Suarez, N. Allali, T. Chafik, I.R. Ramos, A.G. Ruiz, Low solvothermal synthesis and characterization of hollow nanospheres molybdenum sulfide. J. Nanosci. Nanotechnol. 12, 1–7 (2012)

    Article  Google Scholar 

  27. F.L. Pu, ChH Chi, S. Zakari, T. Liew, M.A. Yarmo, N.M. Huang, Preparation of transition metal sulide nanoparticles via hydrothermal route. Sains Malays. 39(2), 243–248 (2010)

    Google Scholar 

  28. D. Duphil, S. Bastide, C.L. Clement, Chemical synthesis of in an organic solution. J. Mater. Chem. 12, 2430–2432 (2002)

    Article  Google Scholar 

  29. X. Zheng, L. Zhu, A. Yan, Ch. Bai, Y. Xie, Ultrasound-assisted cracking process to prepare MoS2 nanorods ultrasonics. Sonochemistry 11, 83–88 (2004)

    Article  Google Scholar 

  30. Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, Z. Wang, A facile route to synthesis of MoS2 nanorods. Mater. Lett. 59, 3452–3455 (2005)

    Article  Google Scholar 

  31. H. Lin, X. Chen, H. Li, M. Yang, Y. Qi, Hydrothermal synthesis and characterization of MoS2 nanorods. Mater. Lett. 64, 1748–1750 (2010)

    Article  Google Scholar 

  32. X. Chen, H. Li, Sh Wang, M. Yang, Y. Qi, Biomolecule-assisted hydrothermal synthesis of molybdenum disulfide microspheres with nanorods. Mater. Lett. 66, 22–24 (2012)

    Article  Google Scholar 

  33. K.H. Hu, Y.R. Wang, X.G. Hu, H.Z. Wo, Preparation and characterisation of ball-like MoS2 nanoparticles. Mater. Sci. Technol. 23, 242–246 (2007)

    Article  Google Scholar 

  34. H. Yu, Y. Liu, S.L. Brock, Synthesis of discrete and dispersible MoS2 nanocrystals. Inorg. Chem. 47, 1428–1434 (2008)

    Article  Google Scholar 

  35. J. Lee, W. Lee, T. Yoon, G. Park, J. Choy, A novel quantum dot pillared layered transition metal sulfide: CdS–MoS2 semiconductor–metal nanohybrid. J. Mater. Chem. 12, 614–618 (2002)

    Article  Google Scholar 

  36. A. Samotus, A. Kanas, M. Dudek, R. Grybos, E. Hodorowicz, 1:1 Molybdenum(VI) citric acid complexes. Trans. Mater. Chem. 16, 495–499 (1991)

    Article  Google Scholar 

  37. D.H. Killeffer, Molybdenum compounds: their chemistry and technology (Interscience Publication, New York, 1952)

    Google Scholar 

  38. H. Tsai, J. Heising, J.L. Schindler, C.R. Kannewurf, M.G. Kanatzidis, Exfoliated–restacked phase of WS2. Chem. Mater. 9, 879–882 (1997)

    Article  Google Scholar 

  39. H. Seo, Y. Lee, EXAFS studies on the formation of MoS2 nanowires. J. Korean Phys. Soc. 59, 730–734 (2011)

    Article  Google Scholar 

  40. M.M. Mdleni, T. Hyeon, K.S. Suslick, Sonochemical synthesis of nanostructured molybdenum sulfide. J. Am. Chem. Soc. 120, 6189–6190 (1998)

    Article  Google Scholar 

  41. P. Jeevanandam, Y. Diamant, M. Motiei, A. Gedanken, The effect of ultrasound irradiation on polycrystalline MoO3. Phys. Chem. Chem. Phys. 3, 4107–4112 (2001)

    Article  Google Scholar 

  42. S.K. Bhar, N. Mukherjee, S.K. Maji, Synthesis of nanocrystalline iron oxide ultrathin films by thermal decomposition of iron nitropruside: structural and optical properties. Mater. Res. Bull. 45, 1948–1953 (2010)

    Article  Google Scholar 

  43. L. Diamandescu, F. Vasiliu, D. Tarabasanu-Mihaila, M. Feder, A.M. Vlaicu, C.M. Teodorescu, D. Macovei, I. Enculescu, V. Parvulescu, E. Vasile, Structural and photo catalytic properties of iron and europium doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater. Chem. Phys. 112, 146–153 (2008)

    Article  Google Scholar 

  44. N.E. Villarreal, R.V. Castillo, D.H. Galvan, A. Camacho, M.J. Yacaman, Structure and catalytic properties of molybdenum sulfide nanoplatelets. Appl. Catal. A 328, 88–97 (2007)

    Article  Google Scholar 

  45. L. Rapport, N. Fleischer, R. Tenne, Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782–1788 (2005)

    Article  Google Scholar 

  46. Y. Tian, Y. He, Y. Zhu, Low temperature synthesis and characterization of molybdenum disulfide nanotubes and nanorods. Mater. Chem. Phys. 87, 87–90 (2004)

    Article  Google Scholar 

  47. Y.D. Li, X.L. Li, R.R. He, J. Zhu, Z.X. Deng, Artificial lamellar mesostructures to WS2 nanotubes. J. Am. Chem. Soc. 124, 1411–1416 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) and funded by the Ministry of Science, ICT, and Future Planning (2014R1A2A2A01007081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Prabhakar Vattikuti or Chan Byon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vattikuti, S.V.P., Byon, C., Reddy, C.V. et al. Co-precipitation synthesis and characterization of faceted MoS2 nanorods with controllable morphologies. Appl. Phys. A 119, 813–823 (2015). https://doi.org/10.1007/s00339-015-9163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9163-7

Keywords

Navigation