Skip to main content
Log in

Crystalline silicon on glass by steady-state solution growth using indium as solvent

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In order to grow crystalline silicon on glass at low temperatures for photovoltaic applications, a two-step process has been developed. In the first step, amorphous Si films are crystallized at temperatures around 300 °C by metal-induced crystallization, whereby liquid indium serves as a solvent for silicon. Due to the difference of chemical potentials between the amorphous and the crystalline state, an in-plane movement of the liquid metal droplets on the formerly amorphous Si film is accompanied by precipitation of crystalline Si along the droplets’ traces, a process we call amorphous–liquid–crystalline (ALC) transition. In the second step, the ALC seed layers serve as templates for the growth of crystalline silicon by steady-state solution growth. In contrast to common liquid-phase epitaxy, the supersaturation in front of the seed layer is established by a stationary temperature difference between a silicon source and the substrate. Si crystallites in the range of 20–50 µm with low impurity concentrations are grown by this technique. Essential features of steady-state solution growth are compatible with the float glass process in large-scale industrial glass production, which raises hopes for a successive production of glass and thin Si films for solar cells in a continuous production line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.M. Powell, M.T. Winkler, H.J. Choi, C.B. Simmons, D.B. Needleman, T. Buonassisi, Energy Environ. Sci. 5, 5874 (2012)

    Article  Google Scholar 

  2. C. Becker, D. Amkreutz, T. Sontheimer, V. Preidel, D. Lockau, J. Haschke, L. Jogschies, C. Klimm, J.J. Merkel, P. Plocica, S. Steffens, B. Rech, Sol. Energy Mater. Sol. Cells 119, 112 (2013)

    Article  Google Scholar 

  3. L. Carnel, I. Gordon, D. Van Gestel, G. Beaucarne, J. Poortmans, Thin Solid Films 516, 6839 (2008)

    Article  ADS  Google Scholar 

  4. F. Dross, K. Baert, T. Bearda, J. Deckers, V. Depauw, O. El Daif, I. Gordon, A. Gougam, J. Govaerts, S. Granata, R. Labie, X. Loozen, R. Martini, A. Masolin, B. O’Sullivan, Y. Qiu, J. Vaes, D. Van Gestel, J. Van Hoeymissen, A. Vanleenhove, K. Van Nieuwenhuysen, S. Venkatachalam, M. Meuris, J. Poortmans, Prog. Photovolt. Res. Appl. 20, 770 (2012)

    Article  Google Scholar 

  5. R. Buitrago, G. Risso, M. Cutrera, M. Battioni, L. Debernardez, J. Schmidt, R. Arce, R. Koropecki, Int. J. Hydrog. Energy 33, 3522 (2008)

    Article  Google Scholar 

  6. H. Cui, P.R. Campbell, M.A. Green, Appl. Phys. A 111, 935 (2012)

    Article  ADS  Google Scholar 

  7. G. Schmidl, G. Andrä, J. Bergmann, A. Gawlik, I. Höger, I. Sill, M. Steglich, F. Falk, G. Mayer, Mater. Lett. 67, 229 (2012)

    Article  Google Scholar 

  8. T. Sontheimer, D. Amkreutz, K. Schulz, P.H. Wöbkenberg, C. Guenther, V. Bakumov, J. Erz, C. Mader, S. Traut, F. Ruske, M. Weizman, A. Schnegg, M. Patz, M. Trocha, O. Wunnicke, B. Rech, Adv. Mater. Interfaces 1, 1300046 (2014)

    Article  Google Scholar 

  9. M.A. Green, Appl. Phys. A 96, 153 (2009)

    Article  ADS  Google Scholar 

  10. A. Gawlik, J. Plentz, I. Höger, G. Andrä, T. Schmidt, U. Brückner, F. Falk, Phys. Status Solidi (a) 212, 162 (2014)

    Article  Google Scholar 

  11. D. Amkreutz, J. Haschke, T. Häring, F. Ruske, B. Rech, Sol. Energy Mater. Sol. Cells 123, 13 (2014)

    Article  Google Scholar 

  12. S. Gall, C. Becker, E. Conrad, P. Dogan, F. Fenske, B. Gorka, K.Y. Lee, B. Rau, F. Ruske, B. Rech, Sol. Energy Mater. Sol. Cells 93, 1004 (2009)

    Article  Google Scholar 

  13. G. Beaucarne, F. Duerinckx, I. Kuzma, K. Van Nieuwenhuysen, H.J. Kim, J. Poortmans, Thin Solid Films 511–512, 533 (2006)

    Article  Google Scholar 

  14. G.F. Zheng, W. Zhang, Z. Shi, M. Gross, A.B. Sproul, S.R. Wenham, M.A. Green, Sol. Energy Mater. Sol. Cells 40, 231 (1996)

    Article  Google Scholar 

  15. J.K. Arch, J.H. Werner, E. Bauser, Sol. Energy Mater. Sol. Cells 29, 387 (1993)

    Article  Google Scholar 

  16. S. Nishida, K. Nakagawa, M. Iwane, Y. Iwasaki, N. Ukiyo, M. Mizutani, T. Shoji, Sol. Energy Mater. Sol. Cells 65, 525 (2001)

    Article  Google Scholar 

  17. J.B. McNeely, R.B. Hall, A.M. Barnett, W.A. Tiller, J. Cryst. Growth 70, 420 (1984)

    Article  ADS  Google Scholar 

  18. R. Kamada, C. Wen, J. Otomo, H. Takahashi, Solid State Phenom. 93, 243 (2003)

    Article  Google Scholar 

  19. Z. Shi, T.L. Young, G.F. Zheng, M.A. Green, Sol. Energy Mater. Sol. Cells 31, 51 (1993)

    Article  Google Scholar 

  20. Z. Shi, M.A. Green, J. Electrochem. Soc. 140, 3290 (1993)

    Article  Google Scholar 

  21. I. Silier, A. Gutjahr, F. Banhart, M. Konuma, E. Bauser, V. Schöllkopf, H. Frey, Mater. Lett. 28, 87 (1996)

    Article  Google Scholar 

  22. R. Heimburger, N. Deßmann, T. Teubner, H.-P. Schramm, T. Boeck, R. Fornari, Thin Solid Films 520, 1784 (2012)

    Article  ADS  Google Scholar 

  23. T. Teubner, R. Heimburger, K. Böttcher, T. Boeck, R. Fornari, Cryst. Growth Des. 8, 2484 (2008)

    Article  Google Scholar 

  24. F. Zemlin, K. Weiss, P. Schiske, W. Kunath, K. Herrmann, Ultramicroscopy 3, 49 (1978)

    Article  Google Scholar 

  25. M. Haider, H. Rose, S. Uhlemann, E. Schwan, B. Kabius, K. Urban, Ultramicroscopy 75, 53 (1998)

    Article  Google Scholar 

  26. R. Bansen, J. Schmidtbauer, R. Gurke, T. Teubner, R. Heimburger, T. Boeck, CrystEngComm 15, 3478 (2013)

    Article  Google Scholar 

  27. L. Yu, P.R. i Cabarrocas, Phys. Rev. B 81, 085323 (2010)

    Article  ADS  Google Scholar 

  28. R.S. Wagner, W.C. Ellis, Appl. Phys. Lett. 4, 89 (1964)

    Article  ADS  Google Scholar 

  29. T. Teubner, R. Heimburger, T. Boeck, R. Fornari, J. Cryst. Growth 347, 31 (2012)

    Article  ADS  Google Scholar 

  30. A.J. Rosenberg, P.H. Robinson, H.C. Gatos, J. Appl. Phys. 29, 771 (1958)

    Article  ADS  Google Scholar 

  31. R. Larciprete, E. Borsella, P. Cinti, Appl. Phys. A Mater. Sci. Process. 62, 103 (1996)

    Article  ADS  Google Scholar 

  32. C. Fiori, R. Devine, Phys. Rev. Lett. 52, 2081 (1984)

    Article  ADS  Google Scholar 

  33. G. Coletti, D. Macdonald, D. Yang, in Adv. Silicon Mater. Photovolt. Appl., ed. by S. Pizzini (Wiley, Chichester, 2012), pp. 79–125

    Chapter  Google Scholar 

  34. D. Sarti, R. Einhaus, Sol. Energy Mater. Sol. Cells 72, 27 (2002)

    Article  Google Scholar 

  35. J. Smith, M. Brodsky, B. Crowder, M. Nathan, A. Pinczuk, Phys. Rev. Lett. 26, 642 (1971)

    Article  ADS  Google Scholar 

  36. J. Parker, D. Feldman, M. Ashkin, Phys. Rev. 155, 712 (1967)

    Article  ADS  Google Scholar 

  37. N. Drozdov, A. Patrin, V. Tkachev, JETP Lett. 23, 597 (1976)

    ADS  Google Scholar 

  38. T. Mchedlidze, M. Kittler, J. Appl. Phys. 111, 053706 (2012)

    Article  ADS  Google Scholar 

  39. A. Cuevas, F. Recart, J. Appl. Phys. 98, 074507 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude toward Teimuraz Mchedlidze from IHP/BTU JointLab for Raman and PL measurements, RTG Mikroanalyse GmbH Berlin for SIMS measurements, Caspar Leendertz and Steffi Schönau from Hemholtz-Zentrum Berlin for support in electrical characterization and for helpful discussions, respectively, and H. P. Schramm for ongoing technical assistance. This work is co-financed by the DFG under contract number HE 6319/1-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Bansen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansen, R., Heimburger, R., Schmidtbauer, J. et al. Crystalline silicon on glass by steady-state solution growth using indium as solvent. Appl. Phys. A 119, 1577–1586 (2015). https://doi.org/10.1007/s00339-015-9141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9141-0

Keywords

Navigation