Skip to main content
Log in

Characterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work reports on the development of a Johnson noise electro-thermal (JET) technique to directly characterize the thermal conductivity of one-dimensional micro-/nanoscale materials. In this technique, the to-be-measured micro-/nanoscale sample is connected between two electrodes and is subjected to steady-state Joule heating. The average temperature rise of the sample is evaluated by simultaneously measuring the Johnson noise over it and its electrical resistance. The system’s Johnson noise measurement accuracy is evaluated by measuring the Boltzmann constant (k B). Our measured k B value (1.375 × 10−23 J/K) agrees very well with the reference value of 1.381 × 10−23 J/K. The temperature measurement accuracy based on Johnson noise is studied against the resistance temperature detector method, and sound agreement (4 %) is obtained. The thermal conductivity of a glass fiber with a diameter of 8.82 μm is measured using the JET technique. The measured value 1.20 W/m K agrees well with the result using a standard technique in our laboratory. The JET technique provides a very compelling way to characterize the thermophysical properties of micro-/nanoscale materials without calibrating the sample’s resistance–temperature coefficient, thereby eliminating the effect of resistance drift/change during measurement and calibration. Since JET technique does not require resistance–temperature correlation, it is also applicable to semi-conductive materials which usually have a nonlinear IV relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Yi, L. Lu, D.L. Zhang, Z.W. Pan, S.S. Xie, Phys. Rev. B 59, R9015 (1999)

    Article  ADS  Google Scholar 

  2. T. Choi, D. Poulikakos, J. Tharian, U. Sennhauser, Nano Lett. 6, 1589 (2006)

    Article  ADS  Google Scholar 

  3. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001)

    Article  ADS  Google Scholar 

  4. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Physica B 323, 67 (2002)

    Article  ADS  Google Scholar 

  5. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar, J. Heat Transf. 125, 881 (2003)

    Article  Google Scholar 

  6. J. Hou, X. Wang, L. Zhang, Appl. Phys. Lett. 89, 152504 (2006)

    Article  ADS  Google Scholar 

  7. J. Guo, X. Wang, D.B. Geohegan, G. Eres, C. Vincent, J. Appl. Phys. 103, 113505 (2008)

    Article  ADS  Google Scholar 

  8. X. Feng, X. Wang, X. Chen, Y. Yue, Acta Mater. 59, 1934 (2011)

    Article  Google Scholar 

  9. J. Guo, X. Wang, T. Wang, J. Appl. Phys. 101, 063537 (2007)

    Article  ADS  Google Scholar 

  10. J.B. Johnson, Phys. Rev. 32, 97 (1928)

    Article  ADS  Google Scholar 

  11. H. Nyquist, Phys. Rev. 32, 110 (1928)

    Article  ADS  Google Scholar 

  12. R. Kisner, C. L. Britton, U. Jagadish, J. B. Wilgen, M. Roberts, T. V. Blalock, D. Holcomb, M. Bobrek, M. N. Ericson, Aerosp. Conf. Proc. 2586 (2004)

  13. M.G. Pepper, J.B. Brown, J. Phys. E: Sci. Instrum. 12, 31 (1979)

    Article  ADS  Google Scholar 

  14. S.P. Benz, J.M. Martinis, P.D. Dresselhaus, S.W. Nam, IEEE Trans. Inst. Meas. 52, 545 (2003)

    Article  Google Scholar 

  15. S.W. Nam, S.P. Benz, P.D. Dresselhaus, C.J. Burroughs, W.L. Tew, D.R. White, J.M. Martinis, IEEE Trans. Inst. Meas. 54, 653 (2005)

    Article  Google Scholar 

  16. S.P. Benz, J.F. Qu, H. Rogalla, D.R. White, P.D. Dresselhaus, W.L. Tew, S.W. Nam, IEEE Trans. Inst. Meas. 58, 884 (2009)

    Article  Google Scholar 

  17. S. P. Benz, J. M. Martinis, S. W. Nam, W. L. Tew, D. R. White, in Proceedings Tempmeko 2001: 8th International Symposium on Temperature and Thermal Measurement in Industry and Science, Vol 1 & 2, 37 (2002)

  18. C.J. Borkowski, T.V. Blalock, Rev. Sci. Instrum. 45, 151 (1974)

    Article  ADS  Google Scholar 

  19. K.C. Fong, K.C. Schwab, Phys. Rev. X 2, 031006 (2012)

    Google Scholar 

  20. R.H. Dicke, Rev. Sci. Instrum. 17, 268 (1946)

    Article  ADS  Google Scholar 

  21. L. Spietz, K.W. Lehnert, I. Siddiqi, R.J. Schoelkopf, Science 300, 1929 (2003)

    Article  ADS  Google Scholar 

  22. H. Brixy, Nucl. Instrum. Methods 97, 75 (1971)

    Article  ADS  Google Scholar 

  23. C.P. Pickup, Metroloogia 11, 151 (1975)

    Article  ADS  Google Scholar 

  24. L. Crovini, A. Actis, R. Galleano, IEEE Trans. Inst. Meas. 42, 391 (1993)

    Article  Google Scholar 

  25. V.A. Khlus, Sov. Phys. JETP 66, 2179 (1987)

    Google Scholar 

  26. M. Reznikov, M. Heiblum, H. Shtrikman, D. Mahalu, Phys. Rev. Lett. 75, 3340 (1995)

    Article  ADS  Google Scholar 

  27. C. Kittel, Introduction to Solid State Physics, 5th edn. (Wiley, New York, 1976)

    Google Scholar 

  28. H. Lin, S. Xu, X.W. Wang, N. Mei, Small 9, 2585 (2013)

    Article  Google Scholar 

  29. D.F. Santavicca, J.D. Chudow, D.E. Prober, M.S. Purewal, P. Kim, Nano Lett. 10, 4538 (2010)

    Article  ADS  Google Scholar 

  30. F. Völklein, H. Reith, T.W. Cornelius, M. Rauber, R. Neumann, Nanotechnology 20, 325706 (2009)

    Article  Google Scholar 

  31. G.Q. Liu, S. Xu, T.T. Cao, H. Lin, Y.Q. Zhang, X.W. Wang, Biopolymers 101, 2019 (2014)

    Google Scholar 

  32. D.R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2015, 95th edn. (Boca Raton, 2014)

Download references

Acknowledgments

Support of this work by the Army Research Office (W911NF-12-1-0272), Office of Naval Research (N000141210603) and National Science Foundation (CBET1235852, CMMI1264399) is gratefully acknowledged. We are grateful to MO-SCI Corporation for providing the glass fiber samples used in this work. X.W thanks the partial support of the “Taishan Scholar” Program of Shandong, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinwei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, X. Characterization of thermal transport in one-dimensional microstructures using Johnson noise electro-thermal technique. Appl. Phys. A 119, 871–879 (2015). https://doi.org/10.1007/s00339-015-9056-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9056-9

Keywords

Navigation