Skip to main content
Log in

A comparison between different X-ray diffraction line broadening analysis methods for nanocrystalline ball-milled FCC powders

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The microstructural characteristics of aluminum, copper and nickel powders are investigated using different X-ray diffraction line broadening analysis approaches. Prior to analysis, the powders were ball-milled to produce a nanocrystalline structure with high density of probable types of lattice defects. A variety of methods, including Scherrer, Williamson–Smallman, Williamson–Hall, Warren–Averbach, modified Williamson–Hall, modified Warren–Averbach, Rietveld refinement and whole powder pattern modeling (WPPM) approaches are applied. In this way, microstructural characteristics such as crystallite size, microstrain, dislocation density, effective outer cut-off radius of dislocations and the probability of twining and stacking faults are calculated. On the other hand, the results of conventional and advanced line broadening analysis methods are compared. It is revealed that the density of linear and planar defects in the mechanically deformed aluminum powder is significantly smaller than that of copper and nickel, as well as the level of anisotropic strain broadening. Moreover, the WPPM procedure provided a better profile fitting with more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. Gubicza, T. Ungar, Z. Kristallogr. 222, 567 (2007)

    Article  Google Scholar 

  2. P. Scherrer, Nachr. Gtt. 2, 96 (1918)

    Google Scholar 

  3. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953)

    Article  Google Scholar 

  4. B.E. Warren, B.L. Averbach, J. Appl. Phys. 21, 595 (1950)

    Article  ADS  Google Scholar 

  5. N.C. Halder, C.N.J. Wagner, Acta Crystallogr. 20, 312 (1966)

    Article  Google Scholar 

  6. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels, J. Appl. Cryst. 15, 308 (1982)

    Article  Google Scholar 

  7. T. Ungar, A. Borbely, Appl. Phys. Lett. 69, 3173 (1996)

    Article  ADS  Google Scholar 

  8. H.M. Rietveld, Acta Crystallogr. 22, 151 (1967)

    Article  Google Scholar 

  9. P. Scardi, M. Leoni, Acta Crystallogr. A 58, 190 (2002)

    Article  Google Scholar 

  10. D. Balzar, N. Audebrand, M.R. Daymond, A. Fitch, A. Hewat, J.I. Langford, A. Le Bail, D. Louer, O. Masson, C.N. McCowan, N.C. Popa, P.W. Stephens, B.H. Toby, J. Appl. Crystallogr. 37, 911 (2004)

    Article  Google Scholar 

  11. V. Soleimanian, S.R. Aghdaee, Powder Diffr. 23, 41 (2008)

    Article  ADS  Google Scholar 

  12. D. Louer, T. Bataille, T. Roisnel, J. Rodriguez-Carvajal, Powder Diffr. 17, 262 (2002)

    Article  ADS  Google Scholar 

  13. M.P.C. Kalita et al., Mater. Lett. 87, 84 (2012)

    Article  Google Scholar 

  14. I. Lucks, P. Lamparter, E.J. Mittemeijer, J. Appl. Crystallogr. 37, 300 (2004)

    Article  Google Scholar 

  15. C.G. Wille, T.A. Kassab, R. Kirchheim, Ultramicroscopy 111, 730 (2011)

    Article  Google Scholar 

  16. J. Ghosh, S. Mazumdar, M. Das, S. Ghatak, A.K. Basu, Mater. Res. Bull. 43, 1023 (2008)

    Article  Google Scholar 

  17. R. Yogamalar et al., Solid State Commun. 149, 1919 (2009)

    Article  ADS  Google Scholar 

  18. T. Ungar, I. Groma, M. Wilkens, J. Appl. Crystallogr. 22, 26 (1989)

    Article  Google Scholar 

  19. T. Ungar, S. Ott, P.G. Sanders, A. Borbely, J.R. Weertman, Acta Mater. 46, 3693 (1998)

    Article  Google Scholar 

  20. M. Wilkens, Phys. Status Solidi 2, 359 (1970)

    Article  ADS  Google Scholar 

  21. B.E. Warren, X-ray Diffraction (Dover, Massachusetts, 1969)

    Google Scholar 

  22. T. Ungar, I. Dragomir, A. Revesz, A. Borbely, J. Appl. Crystallogr. 32, 992 (1999)

    Article  Google Scholar 

  23. A. Borbely, J. Dragomir-Cernatescu, G. Ribarik, T. Ungar, J. Appl. Crystallogr. 36, 160 (2003)

    Article  Google Scholar 

  24. L. Solovyov, J. Appl. Crystallogr. 33, 338 (2000)

    Article  Google Scholar 

  25. J. Rodriguez-Carvajal, in Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr (Toulouse, France, 1990)

  26. P. Stephens, J. Appl. Crystallogr. 32, 281 (1999)

    Article  Google Scholar 

  27. P. Scardi, M. Leoni, Acta Crystallogr. A 57, 604 (2001)

    Article  Google Scholar 

  28. M.A. Krivoglaz, K.P. Ryaboshapka, Phys. Met. Metallogr. 15, 14 (1963)

    Google Scholar 

  29. T. Ungar, G. Tichy, Phys. Status Solidi 171, 425 (1999)

    Article  ADS  Google Scholar 

  30. G. Caglioti, A. Paoletti, F.P. Ricci, Nucl. Instrum. 3, 223 (1958)

    Article  Google Scholar 

  31. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  32. S.R. Aghdaee, V. Soleimanian, Powder Diffr. 24, 228 (2009)

    Article  ADS  Google Scholar 

  33. M. Leoni, T. Confente, P. Scardi, Z. Kristallogr. Suppl. 23, 249 (2006)

    Article  Google Scholar 

  34. B. Akbari, M.P. Tavandashti, M. Zandrahimi, Iran. J. Mater. Sci. Eng. 8, 48 (2011)

    Google Scholar 

  35. H. Borchert, E.V. Shevchenko, A. Robert, I. Mekis, A. Kornowski, G. Grubel, H. Weller, Langmuir 21, 1931 (2005)

    Article  Google Scholar 

  36. V. Uvarov, I. Popov, Mater. Charac. 58, 883 (2007)

    Article  Google Scholar 

  37. A. Weibel, R. Bouchet, F. Boulc, P. Knauth, Chem. Mater. 17, 2378 (2005)

    Article  Google Scholar 

  38. A. Khorsand Zak et al., Solid State Sci. 13, 251 (2011)

    Article  ADS  Google Scholar 

  39. K. Venkateswarlu, A. Chandra Bose, N. Rameshbabu, Phys. B Condens. Matter. 405, 4256 (2010)

    Article  ADS  Google Scholar 

  40. A. Guittoum et al., J. Magn. Magn. Mater. 322, 566 (2010)

    Article  ADS  Google Scholar 

  41. C.L. De Castro, B.S. Mitchell, Mater. Sci. Eng. A 396, 124 (2005)

    Article  Google Scholar 

  42. M.A. Atwater, R.O. Scattergood, C.C. Koch, Mater. Sci. Eng. A 559, 250 (2013)

    Article  Google Scholar 

  43. O. Boytsov, A.I. Ustinov, E. Gaffet, F. Bernard, J. Alloy. Compd. 432, 103 (2007)

    Article  Google Scholar 

  44. A. Fais, Scardi P., Zeitschrift fur Kristallographie. Supplement 37 (2008)

  45. D. Oleszak, P.H. Shingu, J. Appl. Phys. 79, 2975 (1996)

    Article  ADS  Google Scholar 

  46. P. Scardi, M. Leoni, M. D’Incau, Z. Kristallogr. 222, 129 (2007)

    Article  Google Scholar 

  47. P.C.J. Gallagher, Metall. Trans. 1, 2429 (1970)

    Google Scholar 

  48. A. Rohatgi, K. Vecchio, G. Gray III, Metal. Mater. Trans. A 32, 135 (2001)

    Article  Google Scholar 

  49. C.B. Carter, S.M. Holmes, Philos. Mag. 35, 1161 (1977)

    Article  ADS  Google Scholar 

  50. L.E. Murr, Acta Metall. 21, 791 (1973)

    Article  Google Scholar 

  51. N.M. Rosengaard, H.L. Skriver, Phys. Rev. B 47, 12865 (1993)

    Article  ADS  Google Scholar 

  52. J.R. Cahoon, Q. Li, N.L. Richards, Mater. Sci. Eng. A 526, 56 (2009)

    Article  Google Scholar 

  53. L.E. Murr, Scrip. Metall. 6, 203 (1972)

    Article  Google Scholar 

  54. H. Gleiter, Acta Metall. 17, 1421 (1969)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the cooperation of Iran Aluminium Research Center (IARC) for providing ball milling facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mojtahedi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanian, V., Mojtahedi, M. A comparison between different X-ray diffraction line broadening analysis methods for nanocrystalline ball-milled FCC powders. Appl. Phys. A 119, 977–987 (2015). https://doi.org/10.1007/s00339-015-9054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9054-y

Keywords

Navigation