Skip to main content
Log in

Numerical demonstration of compound structure broad pass-band optical metamaterial filter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have presented a systematic numerical study about a compound structure to obtain a broad pass-band optical metamaterial filter at terahertz frequency. The designed structure consists of periodic composite metallic arrays and dielectric layer. In order to increase the pass-bandwidth of such metamaterial filter, the sidewall length of square hole is increased. The availability of bandwidth enhancement is verified by our simulation in this paper, which is performed through full-wave method by using the commercial software Ansoft HFSS 13.0. Based on analysis of this rich optical response, we found that the effective impedance matched to free space leads to the pass-bandwidth increased. We hope these results are useful to modulate the electromagnetic wave in optoelectronics, such as sensor and spectroscopy in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z.Y. Wei, Y. Cao, J. Han, C. Wu, Y.C. Fan, H.Q. Li, Broadband negative refraction in stacked fishnet metamaterial. Appl. Phys. Lett. 97, 141901–141903 (2010)

    Article  ADS  Google Scholar 

  2. J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008)

    Article  ADS  Google Scholar 

  3. Y.Z. Cheng, Y. Nie, R.Z. Gong, A polarization-insensitive and omnidirectional broadband terahertz metamaterial absorber based on coplanar multi-squares films. Opt. Laser Technol. 48, 415–421 (2013)

    Article  ADS  Google Scholar 

  4. C.N. Wang, M. Bai, M. Jin, Y.F. Zhang, Enhanced optical transmission through an array of compound unit with multiple concentric or eccentric annular apertures. Optik 123, 1820–1822 (2012)

    Article  ADS  Google Scholar 

  5. S. Yun, Z.H. Jiang, Q. Xu, Z. Liu, D.H. Werner, T.S. Mayer, Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6, 4475–4482 (2012)

    Article  Google Scholar 

  6. P.V. Tuong, V.D. Lam, J.W. Park, E.H. Choi, S.A. Nikitov, Y.P. Lee, Perfect-absorber metamaterial based on flower-shaped structure. Photonics Nanostruct. Fundam. Appl. 11, 89–94 (2013)

    Article  ADS  Google Scholar 

  7. H. Wu, J. Hou, W. Mo, D. Gao, Z. Zhou, A broadband reflector using a multilayered grating structure with multi-subpart profile. Appl. Phys. B 99, 519–524 (2010)

    Article  ADS  Google Scholar 

  8. J.M. Foley, A.M. Itsuno, T. Das, S. Velicu, J.D. Phillips, Broadband long-wavelength infrared Si/SiO2 subwavelength grating reflector. Opt. Lett. 37, 1523–1525 (2012)

    Article  ADS  Google Scholar 

  9. Z.F. Liu, P.T. Lin, B.W. Wessels, Cascaded Bragg reflectors for a barium titanate thin film electro-optic modulator. J. Opt. A Pure Appl. Opt. 10, 015302–015305 (2008)

    Article  Google Scholar 

  10. T. Saastamoinen, Ti Alasaarela, A. Lehmuskero, I. Vartiainen, N. Heikkil, M. Kuittinen, Resonance waveguide reflectors with semi-wide bandwidth at the visible wavelengths. Opt. Express 19, 2126–2132 (2010)

    Article  ADS  Google Scholar 

  11. R. Alaee, M. Farhat, C. Rockstuhl, F. Lederer, A perfect absorber made of a grapheme micro-ribbon metamaterial. Opt. Express 20, 28017–28021 (2012)

    Article  ADS  Google Scholar 

  12. T. Suzuki, T. Suzuki, J.C. Young, K. Takano, H. Kitahara, M. Hangyo, Analysis of artificial dielectric lens with metallic rectangular chips for terahertz wave band and physical explanation by periodic model. Appl. Phys. A 109, 825–830 (2012)

    Article  ADS  Google Scholar 

  13. A. Grbic, G.V. Eleftheriades, Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403–117406 (2004)

    Article  ADS  Google Scholar 

  14. N. Fang, H. Lee, C. Sun, X.N. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)

    Article  ADS  Google Scholar 

  15. P. Kolinko, D.R. Smith, Numerical study of electromagnetic waves interacting with negative index materials. Opt. Express 11, 640–648 (2003)

    Article  ADS  Google Scholar 

  16. D. Schurig, J.J. Mock, B.J. Justice, S.A. Cummer, J.B. Pendry, A.F. Starr, D.R. Smith, Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006)

    Article  ADS  Google Scholar 

  17. X. Zhang, Z.W. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435–441 (2008)

    Article  ADS  Google Scholar 

  18. N. Kundtz, D.R. Smith, Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2010)

    Article  ADS  Google Scholar 

  19. H.F. Ma, T.J. Cui, Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun. 1, 124–129 (2010)

    Article  ADS  Google Scholar 

  20. X.Z. Chen, Y. Luo, J.J. Zhang, K. Jiang, J.B. Pendry, S. Zhang, Macroscopic invisibility cloaking of visible light. Nat. Commun. 2, 176–185 (2011)

    Article  ADS  Google Scholar 

  21. R. Yang, W.X. Tang, Y. Hao, A broadband zone plate lens from transformation optics. Opt. Express 19, 12348–12355 (2011)

    Article  Google Scholar 

  22. G.V. Eleftheriades, K.G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications (Wiley-VCH Press, 2005). ISBN 0-471-60146-2

  23. Z. Jaksic, O. Jaksic, Z. Djuric, C. Kment, A consideration of the use of metamaterials for sensing applications: field fluctuations and ultimate performance. J. Opt. A Pure Appl. Opt. 9, S377–S384 (2007)

    Article  Google Scholar 

  24. G.V. Eleftheriades, Enabling RF/microwave devices using negative-refractive-index transmission-line (NRI-TL) metamaterials. IEEE Antennas Propag. Mag. 49, 34–51 (2007)

    Article  ADS  Google Scholar 

  25. N.I. Zhudlev, The road ahead for metamaterials. Science 328, 582–583 (2010)

    Article  ADS  Google Scholar 

  26. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Simultaneous negative phase and group velocity of light in ametamaterial. Science 312, 892–894 (2006)

    Article  ADS  Google Scholar 

  27. T. Paul, C. Menzel, C. Rockstuhl, F. Lederer, Advanced optical metamaterials. Adv. Mater. 22, 2354–2357 (2010)

    Article  Google Scholar 

  28. M. Zhong, Y.H. Ye, Role of shape of hole in transmission and negative refractive index of sandwiched metamaterials. Chin. Phys. B 23, 024101–024104 (2014)

    Article  ADS  Google Scholar 

  29. Y.L. Hua, Z.Y. Li, Analytic modal solution to transmission and collimation of light by one-dimensional nanostructured subwavelength metallic slits. J. Appl. Phys. 105, 013104–013111 (2009)

    Article  ADS  Google Scholar 

  30. Y. Zhao, M.A. Belkin, A. Alù, Twisted optical metamaterials for planarized ultrathin broadband circular polarizers. Nat. Commun. 3, 870–875 (2012)

    Article  ADS  Google Scholar 

  31. N. Liu, H.C. Guo, L.W. Fu, S. Kaiser, H. Schweizer, H. Giessen, Three-dimensional photonic metamaterials at optical frequencies. Nat. Mater. 7, 31–37 (2007)

    Article  ADS  Google Scholar 

  32. S. Zhang, W.J. Fan, N.C. Paniou, K.J. Malley, R.M. Osgood, S.R.J. Brueck, Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404–137407 (2005)

    Article  ADS  Google Scholar 

  33. X.D. Wang, Y.H. Ye, J. Ma, M.P. Jiang, Influence of filling medium of holes on the negative-index response of sandwiched metamaterials. Chin. Phys. Lett 27, 094101–094103 (2010)

    Article  ADS  Google Scholar 

  34. D.R. Smith, S. Schult, P. Markos, C.M. Soukoulis, Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys. Rev. B 65, 195104–195108 (2002)

    Article  ADS  Google Scholar 

  35. G. Dolling, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Simultaneous negative phase and group velocity of light in ametamaterial. Science 312, 892–894 (2006)

    Article  ADS  Google Scholar 

  36. X.Q. Zhang, J.Q. Gu, W. Cao, J.G. Han, A. Lakhtakia, W.L. Zhang, Bilayer-fish-scale ultrabroad terahertz bandpass filter. Opt. Lett. 37, 906–908 (2012)

    Article  ADS  Google Scholar 

  37. Y.H. Zhu, S. Vegesna, V. Kuryatkov, M. Holtz, M. Saed, A.A. Bernussi, Terahertz bandpass filters using double-stacked metamaterial layers. Opt. Lett. 37, 296–298 (2012)

    Article  ADS  Google Scholar 

  38. S.M. Xiao, V.P. Drachev, A.V. Kildishev, X.J. Ni, U.K. Chettiar, H.K. Yuan, V.M. Shalaev, Loss-free and active optical negative-index metamaterials. Nature 466, 735–738 (2010)

    Article  ADS  Google Scholar 

  39. J. Han, J. Gu, X. Lu, M. He, Q. Xing, W. Zhang, Broadband resonant terahertz transmission in a composite metal-dielectric structure. Opt. Express 17, 16527–16534 (2009)

    Article  ADS  Google Scholar 

  40. D.R. Smith, D.C. Vier, T. Koschny, C.M. Soukoulis, Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617–036627 (2005)

    Article  ADS  Google Scholar 

  41. A. Mary, S.G. Rodrigo, F.J. Garcia-Vidal, L. Martin-Moreno, Theory of negative-refractive-index response of double-fishnet structures. Phys. Rev. Lett. 101, 103902–103905 (2008)

    Article  ADS  Google Scholar 

  42. T. Koschny, P. Markoš, E.N. Economou, D.R. Smith, D.C. Vier, C.M. Soukoulis, Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials. Phys. Rev. B 71, 245105–245126 (2005)

    Article  ADS  Google Scholar 

  43. P. Ginzburg, N. Berkovitch, A. Nevet, I. Shor, M. Orenstein, Resonances on-demand for plasmonic nano-particles. Nano Lett. 11, 2329–2333 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by National Basic Research Program of China (973 Program, 2012CB921801), Doctoral Fund of Ministry of Education of China (Grant No. 20133207110007) and National Natural Science Foundation of China (Grant No. 61475073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Ye, Y.H. Numerical demonstration of compound structure broad pass-band optical metamaterial filter. Appl. Phys. A 119, 639–645 (2015). https://doi.org/10.1007/s00339-015-9006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-015-9006-6

Keywords

Navigation