Skip to main content
Log in

Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a polarization-independent metamaterial absorber with enhanced bandwidth at two separate frequency bands is proposed over wide angle of incidence. The proposed structure consists of two layers of dielectric substrate. The unit cell is designed on the top surfaces of both the layers of the dielectric by parametric optimization in such a way that bandwidth-enhanced absorptions occur in C and X bands. The proposed structure is fabricated, and experimental results are in good agreement with the simulated responses. This bandwidth-enhanced dual-band absorption nature is maintained for any angle of polarization under normal incidence, thus making the absorber polarization independent in nature. The structure also shows bandwidth-enhanced dual-band absorptions over wide angle of incidence up to 45° under TE polarization and 30° under TM polarization. Moreover, the proposed structure is ultra-thin, having total thickness of 3.2 mm, ~λ/14 and λ/10 with respect to the center frequencies of two absorption bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184–4187 (2000)

    Article  ADS  Google Scholar 

  2. N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 38(5721), 534–537 (2005)

    Article  ADS  Google Scholar 

  3. S.A. Cummer, B.I. Popa, D. Schurig, D.R. Smith, J.B. Pendry, Full wave simulations of electromagnetic cloaking structures. Phys. Rev. E 74, 036621 (2006)

    Article  ADS  Google Scholar 

  4. K. Alici, E. Ozbay, Radiation properties of a split ring resonator and monopole composites. Phys. Stat. Sol. B 244(4), 1192–1196 (2007)

    Article  ADS  Google Scholar 

  5. B. Wang, K.H. Teo, W. Yerazunis, Wireless energy transfer using anisotropic metamaterials, US Patent US 2012/0038219 A1, 16 Feb 2012

  6. N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    Article  ADS  Google Scholar 

  7. M.H. Li, L. Hua Yang, B. Zhou, X. PengShen, Q. Cheng, T.J. Cui, Ultrathin multiband gigahertz metamaterial absorbers. J. Appl. Phys. 110(1), 014909 (2011)

    Article  ADS  Google Scholar 

  8. T. Cao, C.-W. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Fast tuning of double fano resonance using a phase-change metamaterial under low power intensity. Sci. Rep. 4(4463), 1–9 (2014)

    Google Scholar 

  9. H. Tao, N. Landy, C.M. Bingham, X. Zhang, R.D. Averit, W.J. Padilla, A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express 16(10), 7181–7188 (2008)

    Article  ADS  Google Scholar 

  10. N. Zhang, P. Zhou, D. Cheng, X. Weng, J. Xie, L. Deng, Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacer layers. Opt. Lett. 38(7), 1125–1127 (2013)

    Article  ADS  Google Scholar 

  11. F. Bilotti, L. Nucci, L. Vegni, An SRR-based microwave absorber. Microw. Opt. Technol. Lett. 48(11), 2171–2175 (2006)

    Article  Google Scholar 

  12. D. Schurig, J.J. Mock, D.R. Smith, Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006)

    Article  ADS  Google Scholar 

  13. S. Bhattacharyya, H. Baradiya, K.V. Srivastava, An ultra thin metamaterial absorber using electric field driven LC resonator with meander lines, in IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting, Chicago, USA, p. 1, 8–13 July 2012

  14. S. Bhattacharyya, K.V. Srivastava, An ultra thin electric field driven LC resonator structure as metamaterial absorbers for dual band applications, in URSI International Symposium on Electromagnetic Theory (EMTS) 2013, Hiroshima, Japan, p. 722, 20–24 May 2013

  15. S. Bhattacharyya, K.V. Srivastava, Triple band polarization-independent ultra-thin metamaterial absorber using ELC resonator. J. Appl. Phys. 115(6), 064508 (2014)

    Article  ADS  Google Scholar 

  16. L. Huang, H. Chen, Multi-band and polarization insensitive metamaterial absorber. Prog. Electromagn. Res. 113, 103–110 (2011)

    Article  Google Scholar 

  17. X. Shen, T.J. Cui, J. Zhao, H.F. Ma, W.X. Jiang, H. Li, Polarization-independent wide-angle triple-band metamaterial absorber. Opt. Express 19(10), 9401–9407 (2011)

    Article  ADS  Google Scholar 

  18. S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Triple band polarization-independent metamaterial absorber with bandwidth enhancement at X-band. J. Appl. Phys. 114(9), 094514 (2013)

    Article  ADS  Google Scholar 

  19. S. Ghosh, S. Bhattacharyya, Y. Kaiprath, K.V. Srivastava, Bandwidth-enhanced polarization insensitive microwave metamaterial absorber and its equivalent circuit model. J. Appl. Phys. 115(10), 104503 (2014)

    Article  ADS  Google Scholar 

  20. S. Bhattacharyya, S. Ghosh, K.V. Srivastava, Bandwidth enhanced metamaterial absorber using electric field driven LC Resonator for airborne radar applications. Microw. Opt. Technol. Lett. 55(9), 2131–2137 (2013)

    Article  Google Scholar 

  21. S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Bandwidth-enhancement of an ultra-thin polarization insensitive metamaterial absorber. Microw. Opt. Technol. Lett. 56(2), 350–355 (2014)

    Article  Google Scholar 

  22. S. Ghosh, S. Bhattacharyya, K.V. Srivastava, Design of a bandwidth-enhanced ultra thin metamaterial absorber, in Progress in Electromagnetics Research Symposium, Taipei, Taiwan, pp. 1097–1101, 25–28 March 2013

  23. Y.J. Yoo, Y.J. Kim, P.V. Tuong, J.V. Rhee, K.W. Kim, W.H. Jang, Y.H. Kim, H. Cheong, Y.P. Lee, Design of highly absorbing metamaterials for infrared frequencies. Opt. Express 21(26), 32484–32490 (2013)

    Article  Google Scholar 

  24. F. Zhao, C. Lu, Z. Zhang, Multiband optical perfect absorber based on plasmonic double grating, in Frontiers in Optics, Arizona, United States, 19–23 Oct 2014

  25. G. Dayal, S.A. Ramakrishna, Design of multi-band metamaterial perfect absorbers with stacked metal-dielectric disks. J. Opt. 15(5), 055106 (2013)

    Article  ADS  Google Scholar 

  26. J. Sun, L. Liu, G. Dong, L. Zhou, An extremely broadband metamaterial absorber based on destructive interference. Opt. Express 19(22), 21155–21162 (2011)

    Article  ADS  Google Scholar 

  27. H. Xiong, J.S. Hong, C.M. Luo, L.L. Hong, An ultrathin and broadband metamaterial absorber using multi-layer structures. J. Appl. Phys. 114(6), 064109 (2013)

    Article  ADS  Google Scholar 

  28. V.T. Pham, J.W. Park, D.L. Vu, H.Y. Zheng, J.Y. Rhee, K.W. Kim, Y.P. Lee, THz-metamaterial absorbers. Adv. Nat. Sci. Nanosci. Nanotechnol. 4(1), 015001 (2013)

    Article  ADS  Google Scholar 

  29. J.A. Bossard, L. Lin, S. Yun, L. Liu, D.H. Werner, T.S. Meyer, Near-ideal optical metamaterial absorbers with super octave bandwidth. ACS Nano 8(2), 1517–1524 (2014)

    Article  Google Scholar 

  30. W. Li, X. Qiao, Y. Luo, F.X. Qin, H.X. Peng, Magnetic medium broadband metamaterial absorber based on the coupling resonance mechanism. Appl. Phys. A 115(1), 229–234 (2014)

    Article  ADS  Google Scholar 

  31. W. Yuan, Y. Cheng, Low-frequency and broadband metamaterial absorber based on lumped elements: design, characterization and experiment. Appl. Phys. A 117(4), 1915–1921 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. W. Li, J. Valentine, Metamaterial perfect absorber based hot-electron photodetection. Nano Lett. 14(6), 3510–3514 (2014)

    Article  ADS  Google Scholar 

  33. L. Keong, Y. Cui, S. Lan, S.P. Rodrigues, M.L. Brongersma, W. Cai, Electrifying photonic mtamaterials for tunable nonlinera optics. Nat. Commun. 5, 4680 (2014)

    ADS  Google Scholar 

  34. L. Wu, M. Zhang, B. Zu, J. Zhao, T. Jiang, Y. Feng, Dual-band asymmetric electromagnetic wave transmission for dual polarizations in chiral metamaterial structure. Appl. Phys. B 117(2), 527–531 (2014)

    Article  Google Scholar 

  35. G. Dayal, S.A. Ramakrishna, Design of highly absorbing metamaterials for infrared frequencies. Opt. Express 20(16), 17503–17508 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors want to acknowledge the staffs of PCB fabrication facility laboratory of Electrical Engineering Department, IIT Kanpur for fabrication of the structure. Also, they want to thank Mr. Anoop Tiwari for his active support during the experimental measurement. The work is funded by DRDO, India, under Project No. DLJ/TC/1025/I/30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somak Bhattacharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharyya, S., Ghosh, S., Chaurasiya, D. et al. Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber. Appl. Phys. A 118, 207–215 (2015). https://doi.org/10.1007/s00339-014-8908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8908-z

Keywords

Navigation