Skip to main content
Log in

Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, ZnO–CuO composite porous spheres with core–shell structure were successfully synthesized through a controllable simple top-down route to take advantage of the excellent features of ZnO and CuO. The crystal structure and morphology of the as-prepared products were characterized, and a possible growth mechanism was proposed. The obtained sample with a core surrounded by a porous shell has a large surface area. As CuO can well catalyze glucose in alkaline solution, together with the good electron transfer property of ZnO and the hetero-junction formed between them, non-enzymatic glucose sensors based on ZnO–CuO composite porous spheres show good performance with a wide linear range of 0.02–4.86 mM, a high sensitivity of 1,217.4 μA cm−2 mM−1, and a low detection limit of 1.677 μM, indicating a good detection behavior of glucose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.C. Warren, M.R. Perkins, A.M. Adams, M. Kamperman, A.A. Burns, H. Arora et al., Nat. Mater. 11, 460–467 (2012)

    Article  ADS  Google Scholar 

  2. Z. Liu, X.D. Wen, X.L. Wu, Y.J. Gao, H.T. Chen, J. Zhu et al., J. Am. Chem. Soc. 131, 9405–9412 (2009)

    Article  Google Scholar 

  3. P. Sun, W. Zhao, Y. Cao, Y. Guan, Y. Sun, G. Lu, CrystEngComm 13, 3718–3724 (2011)

    Article  Google Scholar 

  4. X. Shi, X. Yang, X. Gu, H. Su, J. Solid State Chem. 186, 76–80 (2012)

    Article  ADS  Google Scholar 

  5. M. Zhao, J. Huang, Y. Zhou, Q. Chen, X. Pan, H. He et al., Biosens. Bioelectron. 43, 226–230 (2013)

    Article  Google Scholar 

  6. M. Zhao, J. Huang, Y. Zhou, X. Pan, H. He, Z. Ye, X. Pan, Chem. Commun. 49, 7656–7658 (2013)

    Article  Google Scholar 

  7. E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis 20, 2482–2486 (2008)

    Article  Google Scholar 

  8. J. Chen, S.Z. Deng, N.S. Xu, W. Zhang, X. Wen, S. Yang, Appl. Phys. Lett. 83, 746 (2003)

    Article  ADS  Google Scholar 

  9. M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang et al., Catal. Commun. 10, 11–16 (2008)

    Article  Google Scholar 

  10. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 18, 867–871 (2006)

    Article  Google Scholar 

  11. M.M. Rahman, A.J. Saleh Ahammad, J. Jin, S.J. Ahn, J. Lee, Sensors (Basel). 10, 4855–4886 (2010)

    Article  Google Scholar 

  12. K.-M. Kim, H.-R. Kim, K. Choi, H. Kim, J. Lee, Sensors (Basel). 11, 9685–9699 (2011)

    Article  Google Scholar 

  13. Z. Zhang, J. Huang, H. He, S. Lin, H. Tang, H. Lu et al., Solid State Electron. 53, 578–583 (2009)

    Article  ADS  Google Scholar 

  14. B. Pal, M. Sharon, Mater. Chem. Phys. 76, 82–87 (2002)

    Article  Google Scholar 

  15. E. Hosono, Y. Mitsui, H. Zhou, Dalton Trans. 40, 5439–5441 (2008)

    Article  Google Scholar 

  16. M. Yu, H. Sun, X. Sun, F. Lu, G. Wang, Int. J. Electrochem. Sci. 8, 2313–2329 (2013)

    Google Scholar 

  17. S.-B. Wang, C.-H. Hsiao, S.-J. Chang, Z.Y. Jiao, S.-J. Young, S.-C. Hung et al., Nanotechnology. 12, 263–269 (2013)

    Google Scholar 

  18. J.X. Wang, X.W. Sun, Y. Yang, K.K.A. Kyaw, X.Y. Huang, J.Z. Yin et al., Nanotechnology. 22, 325704 (2011)

    Article  ADS  Google Scholar 

  19. S. Wei, Y. Chen, Y. Ma, Z. Shao, J. Mol. Catal. A: Chem. 331, 112–116 (2010)

    Article  Google Scholar 

  20. X. Zhao, P. Wang, B. Li, Chem. Commun. (Camb.) 46, 6768–6770 (2010)

    Article  Google Scholar 

  21. T. Soejima, K. Takada, S. Ito, Appl. Surf. Sci. 277, 192–200 (2013)

    Article  ADS  Google Scholar 

  22. S. SoYoon, A. Ramadoss, B. Saravanakumar, S.J. Kim, J. Electroanal. Chem. 717–718, 90–95 (2014)

    Article  Google Scholar 

  23. J. Wu, F. Yin, Integr. Ferroelectr. 147, 47–58 (2013)

    Article  Google Scholar 

  24. L. Han, R. Liu, C. Li, H. Li, C. Li, G. Zhang et al., J. Mater. Chem. 22, 17079–17085 (2012)

    Article  Google Scholar 

  25. H. Sun, J. He, J. Wang, S.-Y. Zhang, C. Liu, T. Sritharan et al., J. Am. Chem. Soc. 135, 9099–9110 (2013)

    Article  Google Scholar 

  26. A. Cao, J. Hu, H. Liang, L. Wan, Angew. Chem. Int. Ed. Engl. 44, 4391–4395 (2005)

    Article  Google Scholar 

  27. J. Wang, T. Tsuzuki, B. Tang, P. Cizek, L. Sun, X. Wang, Colloid Polym. Sci. 288, 1705–1711 (2010)

    Article  Google Scholar 

  28. G. Zhang, L. Yu, H. Bin Wu, H.E. Hoster, X.W.D. Lou, Adv. Mater. 24, 4609–4613 (2012)

    Article  Google Scholar 

  29. P. Voorhees, J. Stat. Phys. 38, 231–252 (1985)

    Article  ADS  Google Scholar 

  30. B. Liu, H.C. Zeng, Small 1, 566–571 (2005)

    Article  Google Scholar 

  31. X. Zhang, G. Wang, X. Liu, J. Wu, M. Li, J. Gu et al., J. Phys. Chem. C 112, 16845–16849 (2008)

    Article  Google Scholar 

  32. F. Meng, W. Shi, Y. Sun, X. Zhu, G. Wu, C. Ruan et al., Biosens. Bioelectron. 42, 141–147 (2013)

    Article  Google Scholar 

  33. X. Wang, C. Hu, H. Liu, G. Du, X. He, Y. Xi, Sens. Actuators B Chem. 144, 220–225 (2010)

    Article  ADS  Google Scholar 

  34. C. Li, Y. Su, S. Zhang, X. Lv, H. Xia, Y. Wang, Biosens. Bioelectron. 26, 903–907 (2010)

    Article  Google Scholar 

  35. M.A. Prathap, B. Kaur, R. Srivastava, J. Colloid Interface Sci. 381, 143–151 (2012)

    Article  Google Scholar 

  36. A. Wei, L. Xiong, L. Sun, Y.-J. Liu, W.-W. Li, Chin. Phys. Lett. 30, 046202 (2013)

    Article  ADS  Google Scholar 

  37. F. Sun, L. Li, P. Liu, Y. Lian, Electroanalysis 23, 395–401 (2011)

    Article  Google Scholar 

  38. Y. Zhang, Y. Wang, J. Jia, J. Wang, Sens. Actuators B Chem. 171–172, 580–587 (2012)

    Article  Google Scholar 

  39. J. Chen, W.-D. Zhang, J.-S. Ye, Electrochem. Commun. 10, 1268–1271 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Natural Science Foundation of China (91333203), Natural Science Foundation of Zhejiang province (LY14E020006) and the Doctorate Fund of the Ministry of Education under Grant no. 2011010110013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingyun Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, B., Zhou, Y., Zhao, M. et al. Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Appl. Phys. A 118, 989–996 (2015). https://doi.org/10.1007/s00339-014-8855-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8855-8

Keywords

Navigation