Skip to main content
Log in

Control of morphology for energy dissipation in carbon nanotube forests

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study focuses on the effect of carbon precursor on the carbon nanotube (CNT) morphology and energy dissipation. Benzene, toluene, and m-xylene were used as carbon precursors for the synthesis of CNT forests following a chemical vapor deposition process. The results indicate that substituents on the benzene ring increase entanglement in the CNT forests. The absorbed energy was slightly greater for CNT forests synthesized using m-xylene than for toluene, but was much smaller for benzene. When compressed to a strain of 0.67, the toluene CNTs absorbed more energy than the m-xylene CNTs. The restitution was much higher for the forests synthesized with m-xylene than toluene while it further decreased for the forests made with benzene. A strong correlation is also observed between the average diameter of the CNTs and the number of methyl substituents on the benzene ring. The control of the entanglement of the CNT forests can potentially be used to design high energy absorbing composites for blast energy dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991)

    Article  ADS  Google Scholar 

  2. E.G. Rakov, Materials made of carbon nanotubes. The carbon nanotube forest. Russ. Chem. Rev. 82(6), 538 (2013)

  3. J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622 (2000)

    Article  ADS  Google Scholar 

  4. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474 (1997)

    Article  ADS  Google Scholar 

  5. S.J. Tans, A.R.M. Verschueren, C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393, 49 (1998)

    Article  ADS  Google Scholar 

  6. S. Fan, M.G. Chapline, N.R. Franklin, T. Tombler, A.M. Cassell, H. Dai, Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283, 512 (1999)

    Article  ADS  Google Scholar 

  7. J.H. Hafner, C.L. Cheung, T.H. Oosterkamp, C.M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe. J. Phys. Chem. B 105(4), 743 (2001)

    Article  Google Scholar 

  8. J.H. Hafner, C.L. Cheung, C.M. Lieber, Growth of nanotubes for probe microscopy tips. Nature 398, 761 (1999)

    Article  ADS  Google Scholar 

  9. M.M.J. Treacy, T.W. Ebbesen, T.M. Gibson, Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381, 680 (1996)

    Article  ADS  Google Scholar 

  10. E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971 (1997)

    Article  Google Scholar 

  11. M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn et al., Bending and buckling of carbon nanotubes under large strain. Nature 389, 582 (1997)

    Article  ADS  Google Scholar 

  12. L. Ci, J. Suhr, V. Pushparaj, X. Zhang, P.M. Ajayan, Continuous carbon nanotube reinforced composites. Nano Lett. 8, 2762 (2008)

    Article  ADS  Google Scholar 

  13. V.P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, P.M. Ajayan, M.N. Ghasemi-Nejhad, Multifunctional composites using reinforced laminae with carbon nanotube-forests. Nat. Mater. 5, 457 (2006)

    Article  ADS  Google Scholar 

  14. J.N. Coleman, U. Khan, W.J. Blau, Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44(9), 1624 (2006)

    Article  Google Scholar 

  15. M. Joseyacaman, M. Mikiyoshida, L. Rendon, J.G. Santiesteban, Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett. 62, 657 (1993)

    Article  ADS  Google Scholar 

  16. M. Endo, K. Takeuchi, K. Kobori, K. Takahashi, H.W. Kroto, A. Sarkar, Pyrolytic carbon nanotubes from vapor-grown carbon fibers. Carbon 33(7), 873 (1995)

    Article  Google Scholar 

  17. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal et al., Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 282, 1105 (1998)

    Article  ADS  Google Scholar 

  18. T.W. Ebbesen, P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature 358, 220 (1992)

    Article  ADS  Google Scholar 

  19. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert et al., Crystalline ropes of metallic carbon nanotubes. Science 273, 483 (1996)

    Article  ADS  Google Scholar 

  20. R.L. Vander Wal, T.M. Ticich, V.E. Curtis, Diffusion flame synthesis of single-walled carbon nanotubes. Chem. Phys. Lett. 323(3–4), 217 (2000)

  21. C.-M. Seah, S.-P. Chai, A.R. Mohamed, Synthesis of aligned carbon nanotubes. Carbon 49(14), 4613 (2011)

    Article  Google Scholar 

  22. T.Y. Lee, J.-H. Han, S.H. Choi, J.-B. Yoo, C.-Y. Park et al., Comparison of source gases and catalyst metals for growth of carbon nanotube. Surf. Coat. Tech. 169–170, 348 (2003)

    Article  Google Scholar 

  23. T.Y. Lee, J.-H. Han, S.H. Choi, J.-B. Yoo, C.-Y. Park et al., Effects of source gases on the growth of carbon nanotubes. Diam. Rel. Mat. 12(3–7), 851 (2003)

    Google Scholar 

  24. S.S. Meysami, A.A. Koos, F. Dillon, N. Grobert, Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon 58, 159 (2013)

    Article  Google Scholar 

  25. M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. M.-L’Hermite, Evidence of sequential lift in growth of aligned multiwalled carbon nanotube multilayers. Nano Lett. 5(12), 2394 (2005)

  26. A. Cao, P.L. Dickrell, W.G. Sawyer, M.N. G.-Nejhad, P.M. Ajayan, Super-compressible foamlike carbon nanotube films. Science 310, 1307 (2005)

    Article  ADS  Google Scholar 

  27. C. Daraio, V.F. Nesterenko, S. Jin, W. Wang, A.M. Rao, Impact response by a foamlike forest of coiled carbon nanotubes. J. Appl. Phys. 100, 064309 (2006)

    Article  ADS  Google Scholar 

  28. N.J. Ginga, W. Chen, S.K. Sitaraman, Waviness reduces effective modulus of carbon nanotube forests by several orders of magnitude. Carbon 66, 57 (2014)

    Article  Google Scholar 

  29. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chem. Phys. Lett. 303(5–6), 467 (1999)

    Article  ADS  Google Scholar 

  30. N. Das, A. Dalai, J.S.S. Mohammadzadeh, J. Adjaye, The effect of feedstock and process conditions on the synthesis of high purity CNTs from aromatic hydrocarbons. Carbon 44, 2236 (2006)

    Article  Google Scholar 

  31. T.C. Wu, S.H. Chang, Temperature enhanced growth of ultralong multi-walled carbon nanotubes forest. Curr. Appl. Phys. 9(5), 1117 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Singh, M.S.P. Shaffer, A.H. Windle, Production of controlled architectures of aligned carbon nanotubes by an injection chemical vapour deposition method. Carbon 41(2), 359 (2003)

    Article  Google Scholar 

  33. M.R. Machmann, Q. Zhang, F. Du, L. Dai, J. Baur, Length dependent foam-like mechanical response of axially indented vertically oriented carbon nanotube arrays. Carbon 49, 386 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by an appointment to the Postgraduate Research Participation Program at the U.S. Army Engineer Research and Development Center, Construction Engineering Research Laboratory (ERDC-CERL) administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and ERDC-CERL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veera M. Boddu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brenner, M.W., Boddu, V.M. & Kumar, A. Control of morphology for energy dissipation in carbon nanotube forests. Appl. Phys. A 117, 1849–1857 (2014). https://doi.org/10.1007/s00339-014-8812-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8812-6

Keywords

Navigation