Skip to main content

Advertisement

Log in

Controlling Young’s modulus of polymerized structures fabricated by direct laser writing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We demonstrate that Young’s modulus of polymerized microstructures in both air and liquid can be controlled by changing the writing velocity of the femtosecond laser two-photon polymerization, which is crucial for many practical applications. For the zirconium/silicon inorganic/organic hybrid sol–gel, the Young’s modulus for dry polymerized micro-cantilevers in air can be adjusted from 5.5 to 9.4 GPa by varying writing velocity from 600 to 200 μm/s, and it also can be controlled in liquid, which is four orders smaller than in air. To characterize the Young’s modulus in liquid, we propose a simple method by measuring non-adhered lengths of the arc-shaped or s-shaped polymerized micro-cantilevers after drying in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature (London) 412, 697 (2001)

    Article  ADS  Google Scholar 

  2. J. Fischer, M. Wegener, Laser Photon Rev. 7, 22 (2013)

    Article  Google Scholar 

  3. S.H. Park, D.Y. Yang, K.S. Lee, Laser Photon Rev. 3, 1 (2009)

    Article  Google Scholar 

  4. C.N. LaFratta, J.T. Fourkas, T. Baldacchini, R.A. Farrer, Angew. Chem. Int. Ed. 46, 6238 (2007)

    Article  Google Scholar 

  5. W.-H. Zhou, S.M. Kuebler, K.L. Braun, T.-Y. Yu, J.K. Cammack, C.K. Ober, J.W. Perry, S.R. Marder, Science 296, 1106 (2002)

    Article  ADS  Google Scholar 

  6. S. Maruo, T. Saeki, Opt. Express 16, 1174 (2008)

    Article  ADS  Google Scholar 

  7. Z.P. Liu, Y. Li, Y.F. Xiao, B.B. Li, X.F. Jiang, Y. Qin, X.B. Feng, H. Yang, Q.H. Gong, Appl. Phys. Lett. 97, 211105 (2010)

    Article  ADS  Google Scholar 

  8. H.-B. Sun, K. Takada, S. Kawata, Appl. Phys. Lett. 79, 3173 (2001)

    Article  ADS  Google Scholar 

  9. Z. Bayindir, Y. Sun, M.J. Naughton, C.N. LaFratta, T. Baldacchini, J.T. Fourkas, J. Stewart, B.E.A. Saleh, M.C. Teich, Appl. Phys. Lett. 86, 064105 (2005)

    Article  ADS  Google Scholar 

  10. S. Nakanishi, S. Shoji, S. Kawata, H.-B. Sun, Appl. Phys. Lett. 91(6), 063112 (2007)

    Article  ADS  Google Scholar 

  11. P. Danilevicius, S. Rekstyte, E. Balciunas, A. Kraniauskas, R. Sirmenis, D. Baltriukiene, V. Bukelskiene, R. Gadonas, V. Sirvydis, A. Piskarskas, M. Malinauskas, Opt. Laser Technol. 45, 518 (2013)

    Article  ADS  Google Scholar 

  12. M. Kaltenbrunner, M.S. White, E.D. Glowacki, T. Sekitani, T. Someya, N.S. Sariciftci, S. Bauer, Nat. Commun. 3, 770 (2012)

    Article  ADS  Google Scholar 

  13. Q.-L. Bao, H. Zhang, J.-X. Yang, S. Wang, D.-Y. Tang, R. Jose, S. Ramakrishna, C.T. Lim, K.P. Loh, Adv. Funct. Mater. 20, 782 (2010)

    Article  Google Scholar 

  14. X. Chen, S.-Y. Xu, N. Yao, Y. Shi, Nano Lett. 10, 2133 (2010)

    Article  ADS  Google Scholar 

  15. D.A. Fletcher, R.D. Mullins, Nature (London) 463, 485 (2010)

    Article  ADS  Google Scholar 

  16. M.A. Stuart, W.T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 9, 101 (2010)

    Article  ADS  Google Scholar 

  17. M.M. Stevens, J.H. George, Science 310, 1135 (2005)

    Article  ADS  Google Scholar 

  18. K. Cicha, T. Koch, J. Torgersen, Z.-Q. Li, R. Liska, J. Stampfl, J. Appl. Phys. 112, 094906 (2012)

    Article  ADS  Google Scholar 

  19. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, M. Farsari, ACS Nano 6, 2302 (2012)

    Article  Google Scholar 

  20. J.C. Tan, A.K. Cheetham, Chem. Soc. Rev. 40, 1059 (2011)

    Article  Google Scholar 

  21. J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, M. Spitzbart, J. Micromech. Microeng. 18, 125014 (2008)

    Article  ADS  Google Scholar 

  22. H. Wu, T. Yildirim, W. Zhou, J. Phys. Chem. Lett. 4, 925 (2013)

    Article  Google Scholar 

  23. H.-S. Khoo, K.-K. Liu, F.-G. Tseng, J. Micromech. Microeng. 13, 822 (2003)

    Article  ADS  Google Scholar 

  24. S. Bundschuh, O. Kraft, H.K. Arslan, H. Gliemann, P.G. Weidle, C. Woll, Appl. Phys. Lett. 101, 101910 (2012)

    Article  ADS  Google Scholar 

  25. M. Peroglio, L. Gremillarda, J. Chevalier, L. Chazeaua, C. Gauthiera, T. Hamaide, J. Eur. Ceram. Soc. 27, 2679 (2007)

    Article  Google Scholar 

  26. Y. Zhang, Y.P. Zhao, Sensor Actuat. A 171, 381–390 (2011)

    Article  Google Scholar 

  27. C.H. Mastrangelo, C.H. Hsu, IEEE Solid-State Sensors and Actuators Workshop, Hilton Head Island, SC, USA. p. 208, (1992)

  28. D. Janssen, R. De Palma, S. Verlaak, P. Heremans, W. Dehaen, Thin Solid Films 515, 4 (2006)

    Article  Google Scholar 

  29. M.P. de Boer, T.A. Michalske, J. Appl. Phys. 86, 817 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China under Grant No. 2013CB921904, and the National Natural Science Foundation of China under Grant Nos. 11074013, 11023003, 11121091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, SJ., Li, Y., Wang, YK. et al. Controlling Young’s modulus of polymerized structures fabricated by direct laser writing. Appl. Phys. A 118, 437–441 (2015). https://doi.org/10.1007/s00339-014-8787-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8787-3

Keywords

Navigation