Skip to main content

Advertisement

Log in

Dielectric sensing by charging energy modulation in a nano-granular metal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Several sensing concepts using nanostructures prepared by focused-electron-beam-induced deposition have been developed over the last years. Following work on highly miniaturized Hall sensors for magnetic sensing with soft magnetic Co, strain and force sensing based on nano-granular platinum–carbon structures (Pt(C)) was introduced. Very recently, the capability of nano-granular Pt(C) structures to detect the presence of adsorbate water layers by conductance modulations was demonstrated. For magnetic and strain sensing, the underlying physical mechanisms of the sensing effect have been analyzed in detail and are now quite well understood. This is not the case for the adsorbate layer-induced conductance modulation effect. Here, we provide a theoretical framework that allows for a semi-quantitative understanding of the observed water-sensing effect. We show how the near-interface renormalization of the Coulomb charging energy in the nano-granular metal caused by the dielectric screening of the polarizable adsorbate layer leads to a conductance modulation. The model can account for the conductance modulation observed in the water adsorbate experiments and can also be applied to understand similar effects caused by near-interface dielectric anomalies of ferroelectric thin films on top of nano-granular Pt(C). Our findings provide a pathway toward optimized nano-granular layer structures suitable for a wide range of dielectric or local potential sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R.S. Popovic, P. Hoffmann, Appl. Phys. Lett. 86, 042503 (2005)

    Article  ADS  Google Scholar 

  2. M. Gabureac, L. Bernau, I. Utke, G. Boero, Nanotechnology 21, 115503 (2010)

    Article  ADS  Google Scholar 

  3. C.H. Schwalb, C. Grimm, M. Baranowski, R. Sachser, F. Porrati, H. Reith, P. Das, J. Mller, F. Vlklein, A. Kaya, M. Huth, Sensors 10, 9847 (2010)

    Article  Google Scholar 

  4. M. Huth, F. Porrati, C.H. Schwalb, M. Winhold, R. Sachser, M. Dukic, J. Adams, G. Fantner, Beilstein J. Nanotechnol. 3, 597 (2012)

    Article  Google Scholar 

  5. M. Huth, J. Appl. Phys. 107, 113709 (2010)

    Article  ADS  Google Scholar 

  6. F. Kolb, K. Schmoltner, M. Huth, A. Hohenau, J. Krenn, A. Klug, E.J.W. List, H. Plank, Nanotechnology 24, 305501 (2013)

    Article  Google Scholar 

  7. M. Huth, A. Rippert, R. Sachser, L. Keller, submitted to Nanotechnology (2014), arXiv:1404.7669

  8. I.S. Beloborodov, A.V. Lopatin, V.M. Vinokur, K.B. Efetov, Rev. Mod. Phys. 79, 469 (2007)

    Article  ADS  Google Scholar 

  9. O.G. Udalov, N.M. Chtchelkatchev, A. Glatz, I.S. Beloborodov, Phys. Rev. B 89, 054203 (2014)

    Article  ADS  Google Scholar 

  10. F. Porrati, R. Sachser, C.H. Schwalb, A. Frangakis, M. Huth, J. Appl. Phys. 109, 063715 (2011)

    Article  ADS  Google Scholar 

  11. H. Plank, G. Kothleitner, F. Hofer, S.G. Michelitsch, C. Gspan, A. Hohenau, J. Krenn, J. Vac. Sci. Technol. A 29, 051801 (2011)

    Article  Google Scholar 

  12. R. Sachser, F. Porrati, ChH Schwalb, M. Huth, Phys. Rev. Lett. 107, 206803 (2011)

    Article  ADS  Google Scholar 

  13. C. Wasshuber, Computational Single-Electronics, 139ff (Springer, Wien, 2001)

    Book  Google Scholar 

  14. N. Anderson, Am. J. Phys. 38, 1483 (1970)

    Article  ADS  Google Scholar 

  15. R.G. Barrera, O. Guzman, B. Balaguer, Am. J. Phys. 46, 1172 (1978)

    Article  ADS  Google Scholar 

  16. J.C. Garnett, Philos. Trans. R. Soc. Lond. 203, 385 (1904); 205, 237 (1906)

  17. X.C. Zeng, D.J. Bergmann, P.M. Hui, D. Stroud, Phys. Rev. B 38, 10970 (1988)

    Article  ADS  Google Scholar 

  18. M. Uematsu, E.U. Frank, J. Phys. Chem. Ref. Data 9, 1291 (1980)

    Article  ADS  Google Scholar 

  19. A. Gil, J. Colchero, M. Luna, J. Gomez-Herrero, A.M. Baro, Langmuir 16, 5086 (2000)

    Article  Google Scholar 

  20. A. Opitz, M. Scherge, S.I.-U. Ahmed, J.A. Schaefer, J. Appl. Phys. 101, 064310 (2007)

    Article  ADS  Google Scholar 

  21. L.P. Gor’kov, G.M. Eliashberg, Sov. Phys. JETP 21, 940 (1965)

    ADS  Google Scholar 

  22. M. Strässler, M.J. Rice, P. Wyder, Phys. Rev. B 6, 2575 (1972)

    Article  ADS  Google Scholar 

  23. S.K. Saha, Phys. Rev. B 69, 125416 (2004)

    Article  ADS  Google Scholar 

  24. A.A. Middleton, N.S. Wingreen, Phys. Rev. Lett. 71, 3198 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

M. H. thanks the Deutsche Forschungsgemeinschaft for financial support through the Collaborative Research Centre SFB/TR 49.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Huth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huth, M., Kolb, F. & Plank, H. Dielectric sensing by charging energy modulation in a nano-granular metal. Appl. Phys. A 117, 1689–1696 (2014). https://doi.org/10.1007/s00339-014-8631-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8631-9

Keywords

Navigation