Skip to main content
Log in

Ferromagnetism modulation by phase change in Mn-doped GeTe chalcogenide magnetic materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, an effective method to modulate the ferromagnetic properties of Mn-doped GeTe chalcogenide-based phase change materials is presented. The microstructure of the phase change magnetic material Ge1−x Mn x Te thin films was studied. The X-ray diffraction results demonstrate that the as-deposited films are amorphous, and the crystalline films are formed after annealing at 350 °C for 10 min. Crystallographic structure investigation shows the existence of some secondary magnetic phases. The lattice parameters of Ge1−x Mn x Te (x = 0.04, 0.12 and 0.15) thin films are found to be slightly different with changes of Mn compositions. The structural analysis clearly indicates that all the films have a stable rhombohedral face-centered cubic polycrystalline structure. The magnetic properties of the amorphous and crystalline Ge0.96Mn0.04Te were investigated. The measurements of magnetization (M) as a function of the magnetic field (H) show that both amorphous and crystalline phases of Ge0.96Mn0.04Te thin film are ferromagnetic and there is drastic variation between amorphous and crystalline states. The temperature (T) dependence of magnetizations at zero field cooling (ZFC) and field cooling (FC) conditions of the crystalline Ge0.96Mn0.04Te thin film under different applied magnetic fields were performed. The measured data at 100 and 300 Oe applied magnetic fields show large bifurcations in the ZFC and FC curves while on the 5,000 Oe magnetic field there is no deviation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Zhang, I. Ronneberger, Y. Li, R. Mozzarella, Adv. Mater. 24, 4387 (2012)

    Article  Google Scholar 

  2. W. Song, L. Shi, T. Chong, J. Nanosci. Nanotechnol. 11, 2648 (2011)

    Article  Google Scholar 

  3. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007)

    Article  ADS  Google Scholar 

  4. R. Wang, J. Wei, Y. Fan, Opt. Express 22, 4973 (2014)

    Article  ADS  Google Scholar 

  5. N. Yu, H. Tong, J. Zhou, A. Elbashir, X.S. Miao, Appl. Phys. Lett. 103, 061910 (2013)

    Article  ADS  Google Scholar 

  6. G.W. Burr, M.J. Breitwisch, M. Franceschini, J. Vac. Sci. Technol. B 28, 223 (2010)

    Article  Google Scholar 

  7. H. Lyeo, D. Cahill, B. Lee, J. Abelson, M. Kwon, K. Kim, S. Bishop, B. Cheong, Appl. Phys. Lett 89, 151904 (2006)

    Article  ADS  Google Scholar 

  8. J.-W. Park, S.H. Eom, H. Lee et al., Phys. Rev. B 80, 115209 (2009)

    Article  ADS  Google Scholar 

  9. R. Simpson, P. Fons, A. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga, Nat. Nanotechnol. 6, 501 (2011)

    Article  ADS  Google Scholar 

  10. H. Cheng, C. Jong, C. Lee, T. Chin, IEEE Trans. Magn. 41, 1031 (2005)

    Article  ADS  Google Scholar 

  11. W. Song, L. Shi, X. Miao, C. Chong, Adv. Mater. 20, 2394 (2008)

    Article  Google Scholar 

  12. D. Ding, K. Bai, W. Song, L. Shi, R. Zhao, M. Sullivan, P. Wu, Phys. Rev. B 84, 214416 (2011)

    Article  ADS  Google Scholar 

  13. J. Park, S. Eom, H. Lee, Phys. Rev. B 80, 115209 (2009)

    Article  ADS  Google Scholar 

  14. Z. Yang, Appl. Phys. A 112, 241 (2013)

    Article  ADS  Google Scholar 

  15. D. Wu, Q. Xu, F. Zhang, X. Liu, Y. Du, AAPPS Bull. 18, 53 (2008)

    MATH  Google Scholar 

  16. F. Tong, J. Hao, Z. Chen, G. Gao, X. Miao, Appl. Phys. Lett. 99, 081908 (2011)

    Article  ADS  Google Scholar 

  17. Y. Li, R. Mazzarello, Adv. Mater. 24, 1429 (2012)

    Article  Google Scholar 

  18. Y. Fukuma, H. Asada, J. Miyashita, N. Nishimura, T. Koyanagi, J. Appl. Phys. 93, 7667 (2003)

    Article  ADS  Google Scholar 

  19. Y. Liu, S. Bose, J. Kudrnovský, J. Appl. Phys. 112, 053902 (2012)

    Article  ADS  Google Scholar 

  20. H. Akinaga, H. Ohno, IEEE Trans. Nanotechnol. 1, 19 (2002)

    Article  ADS  Google Scholar 

  21. X. Yao, J. Harms, A. Lyle, IEEE Trans. Nanotechnol. 11, 120 (2012)

    Article  ADS  Google Scholar 

  22. Y. Fukuma, H. Asada, N. Nishimura, T. Koyanagi, J. Appl. Phys. 93, 4034 (2003)

    Article  ADS  Google Scholar 

  23. Y.-H. Chu, L.W. Martin, M.B. Holcomb, R. Ramesh, Nat. Mater. 7, 478 (2008)

    Article  ADS  Google Scholar 

  24. P. Poddar, G.T. Woods, S. Srinath et al., IEEE Trans. Nanotechnol. 4(1), 59 (2005)

    Article  ADS  Google Scholar 

  25. P. Sati, R. Hayn, R. Kuzian et al., Phys. Rev. Lett. 96, 017203 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61006079) and the Fundamental Research Funds for the Central Universities (HUST: No. 2013TS051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomin Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adam, A.A.E., Cheng, X., Guan, X. et al. Ferromagnetism modulation by phase change in Mn-doped GeTe chalcogenide magnetic materials. Appl. Phys. A 117, 2115–2119 (2014). https://doi.org/10.1007/s00339-014-8627-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8627-5

Keywords

Navigation