Skip to main content
Log in

First principles calculations of electronic and optical properties of Mo and C co-doped anatase TiO2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using the first principles calculations, the electronic and optical properties of C, Mo and Mo-C-doped anatase TiO2 are studied. For the Mo mono-doped TiO2, the band gap reduces little, and the largest perturbation occurs at the CBM of TiO2. C mono-doping suppresses the effective band gap, but the partially occupied subbands in the gap probably also serve as the recombination centers for electrons and holes. Therefore, the Mo-C co-doping is investigated for the charge compensation consideration. We discuss six doped configurations and find that the total energy of the system is increased with increasing distance of C and Mo. It is found that co-doped configurations with C nearest to Mo possess the lowest total energy. Then, we focus on discussing three possible Mo-C adjacent co-doped configurations. The subbands mainly induced by C-2p states in the band gap become fully occupied because the Mo atom contributes sufficient electrons to C anion for compensation. At the same time, the effective band gap is narrowed about 0.9 eV and the perturbation at the CBM occurred in Mo mono-doped TiO2 disappears, which means the band edges of doped system still straddle the redox potentials of water. Furthermore, the optical properties of the compensated Mo-C adjacent co-doped TiO2 and pure TiO2 are calculated. The optical absorption edges of the Mo-C co-doped TiO2 shift towards the visible light region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.L. Linsebigler, G. Lu, J.T. Yates, Chem. Rev. 95, 735 (1995)

    Article  Google Scholar 

  2. S. Klosek, D. Raftery, J. Phys. Chem. B 105, 2815 (2001)

    Article  Google Scholar 

  3. A. Fujishima, K. Honda, Nature (London) 238, 37 (1972)

    Article  ADS  Google Scholar 

  4. P. Wang, S.M. Zakeeruddin, J.E. Moser, M.K. Nazeeruddin, T. Sekiguchi, M. Grätzel, Nat. Mater. 2, 402 (2003)

    Article  ADS  Google Scholar 

  5. X.Q. Gong, A. Selloni, Phys. Rev. B 76, 235307 (2007)

    Article  ADS  Google Scholar 

  6. M. Xu, Y. Gao, E.M. Moreno, M. Kunst, M. Muhler, Y. Wang, H. Idriss, C. Wöll, Phys. Rev. Lett. 106, 8302 (2011)

    Google Scholar 

  7. T. Ohno, T. Mitsui, M. Matsumura, Chem. Lett. 32, 364 (2003)

    Article  Google Scholar 

  8. M. Niu, W.J. Xu, X.H. Shao, D.J. Cheng, Appl. Phys. Lett. 99, 203111 (2011)

    Article  ADS  Google Scholar 

  9. R. Amadelli, L. Samiolo, M. Borsa, M. Bellardita, L. Palmisano, Catal. Today 206, 19 (2013)

    Article  Google Scholar 

  10. F. Lucassen, M. Koch-Müller, M. Taran, G. Franz, Am. Miner. 98, 7 (2013)

    Article  Google Scholar 

  11. Y. Gai, J. Li, S.S. Li, J.B. Xia, S.H. Wei, Phys. Rev. Lett. 102, 036402 (2009)

    Article  ADS  Google Scholar 

  12. T. Umebayashi, T. Yamaki, S. Yamamoto, A. Miyashita, S. Tanaka, J. Appl. Phys. 93, 5156 (2003)

    Article  ADS  Google Scholar 

  13. K. Yang, Y. Dai, B. Huang, Phys. Rev. B 76, 195201 (2007)

    Article  ADS  Google Scholar 

  14. H. Irie, Y. Watanabe, K. Hashimoto, Chem. Lett. 32, 772 (2003)

    Article  Google Scholar 

  15. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  16. S.U.M. Khan, M. Al-Shahry, W.B. Ingler Jr, Science 297, 2243 (2002)

    Article  ADS  Google Scholar 

  17. J.H. Park, S. Kim, A.J. Bard, Nano Lett. 6, 24 (2006)

    Article  ADS  Google Scholar 

  18. M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, P. Yang, Mater. Lett. 60, 693 (2006)

    Article  Google Scholar 

  19. K. Yang, Y. Dai, B. Huang, M.-H. Whangbo, J. Phys. Chem. C 113, 2624 (2009)

    Article  Google Scholar 

  20. H. Kamisaka, T. Adachi, K. Yamashita, J. Chem. Phys. 123, 084704 (2005)

    Article  ADS  Google Scholar 

  21. Y. Choi, T. Umebayashi, M. Yoshikawa, J. Mater. Sci. 39, 1837 (2004)

    Article  ADS  Google Scholar 

  22. C.D. Valentin, G. Pacchioni, A. Selloni, Chem. Mater. 17, 6656 (2005)

    Article  Google Scholar 

  23. K. Yang, Y. Dai, B. Huang, M.-H. Whangbo, Appl. Phys. Lett. 93, 132507 (2008)

    Article  ADS  Google Scholar 

  24. H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 107, 5483 (2003)

    Article  Google Scholar 

  25. M. Batzill, E.H. Morales, U. Diebold, Phys. Rev. Lett. 96, 026103 (2006)

    Article  ADS  Google Scholar 

  26. T. Yamamoto, T. Ohno, Phys. Rev. B 85, 033104 (2012)

    Article  ADS  Google Scholar 

  27. W.J. Yin, H.W. Tang, S.H. Wei, M.M. Al-Jassim, J. Turner, Y.F. Yan, Phys. Rev. B 82, 045106 (2010)

    Article  ADS  Google Scholar 

  28. X.G. Ma, Y. Wu, Y.H. Lu, J. Xu, Y.J. Wang, Y.F. Zhu, J. Phys. Chem. C 115, 16963 (2011)

    Article  Google Scholar 

  29. Y. Fang, D.J. Cheng, M. Niu, Y.J. Yi, W. Wu, Chem. Phys. Lett. 567, 34 (2013)

    Article  ADS  Google Scholar 

  30. R. Long, N.J. English, Chem. Mater. 22, 1616 (2010)

    Article  Google Scholar 

  31. H. Liu, Z. Lu, L. Yue, J. Liu, Z. Gan, C. Shu, T. Zhang, J. Shi, R. Xiong, Appl. Sur. Sci. 257, 9355 (2011)

    Article  ADS  Google Scholar 

  32. M. Khan, J.N. Xu, N. Chen, W.B. Cao, Phys. B 407, 3610 (2012)

    Article  ADS  Google Scholar 

  33. L.G. Devi, B.N. Murthy, S.G. Kumar, J. Mol. Catal. A Chem. 308, 174 (2009)

    Article  Google Scholar 

  34. M.S. Jeon, W.S. Yoon, H. Joo, T.K. Lee, H. Lee, Appl. Surf. Sci. 165, 209 (2000)

    Article  ADS  Google Scholar 

  35. S. Mohapatra, M. Misra, V. Mahajan, K. Raja, J. Catal. 246, 362 (2007)

    Article  Google Scholar 

  36. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. G. Kresse, J. Hafner, Phys. Rev. B 47, R558 (1993)

    Article  ADS  Google Scholar 

  38. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  39. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994)

    Article  ADS  Google Scholar 

  40. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  41. M. Nolan, G.W. Watson, J. Chem. Phys. 125, 14470 (2006)

    Article  Google Scholar 

  42. D.O. Scanlon, B.J. Morgan, G.W. Watson, A. Walsh, Phys. Rev. Lett. 103, 096405 (2009)

    Article  ADS  Google Scholar 

  43. X. Han, G. Shao, J. Phys. Chem. C 115, 8274 (2011)

    Article  Google Scholar 

  44. G. Shao, J. Phys. Chem. C 112, 18677 (2008)

    Article  Google Scholar 

  45. S.L. Dudarev, G.A. Botton, S.Y. Savarsov, C.J. Humphreys, A.P. Sutton, Phys. Rev. B 57, 1505 (1998)

    Article  ADS  Google Scholar 

  46. R. Long, N.J. English, ChemPhysChem 11, 2606 (2010)

    Article  Google Scholar 

  47. H.X. Zhu, J.-M. Liu, Comput. Mater. Sci. 85, 164 (2014)

    Article  Google Scholar 

  48. S. Lutfalla, V. Shapovalov, A.T. Bell, J. Chem. Theory Comput. 7, 2218 (2011)

    Article  Google Scholar 

  49. M. Khan, J.N. Xu, N. Chen, W.B. Cao, J. Alloys Compd. 513, 539 (2012)

    Article  Google Scholar 

  50. R.S. Zhang, Y. Liu, Q. Gao, F. Teng, C.L. Song, W. Wang, G.R. Han, J. Alloys Compd. 509, 9178 (2011)

    Article  Google Scholar 

  51. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987)

    Article  Google Scholar 

  52. R. Long, N.J. English, Chem. Phys. Lett. 478, 175 (2009)

    Article  ADS  Google Scholar 

  53. R. Asahi, Y. Taga, W. Mannstadt, A.J. Freeman, Phys. Rev. B 61, 7459 (2000)

    Article  ADS  Google Scholar 

  54. H. Tang, H. Berger, P.E. Schmid, F. Levy, G. Burri, Solid State Commun. 23, 161 (1977)

    Article  Google Scholar 

  55. W.J. Shi, S.J. Xiong, Phys. Rev. B 84, 205210 (2011)

    Article  ADS  Google Scholar 

  56. J. Sato, H. Kobayashi, Y. Inoue, J. Phys. Chem. B 107, 7970 (2003)

    Article  Google Scholar 

  57. Y. Inoue, Energy Environ. Sci. 2, 364 (2009)

    Article  Google Scholar 

  58. X.H. Yu, C.S. Li, Y. Ling, T.A. Tang, Q. Wu, J.J. Kong, J. Alloys Compd. 507, 33 (2010)

    Article  Google Scholar 

  59. D.B. Melrose, R.J. Stoneham, J. Phys. A Math. Gen. 10, L17 (1977)

    Article  ADS  Google Scholar 

  60. M. Li, J.Y. Zhang, D. Guo, Y. Zhang, Chem. Phys. Lett. 539–540, 175 (2012)

    Article  Google Scholar 

  61. Z. Zhou, M. Li, L. Guo, J. Phys. Chem. Solids 71, 1707 (2010)

    Article  ADS  Google Scholar 

  62. G. Shao, J. Phys. Chem. C 113, 6800 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National 973 Projects of China (Grants No. 2011CB922101), the Natural Science Foundation of China (Grants No. 11234005 and No. 51332006), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-M. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H.X., Liu, JM. First principles calculations of electronic and optical properties of Mo and C co-doped anatase TiO2 . Appl. Phys. A 117, 831–839 (2014). https://doi.org/10.1007/s00339-014-8433-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-014-8433-0

Keywords

Navigation