Skip to main content
Log in

Nanosecond laser ablation and deposition of silver, copper, zinc and tin

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanosecond pulsed laser deposition of different metals (Ag, Cu, Sn, Zn) has been studied in high vacuum at a laser wavelength of 355 nm and pulse length of 6 ns. The deposition rate is roughly similar for Sn, Cu and Ag, which have comparable cohesive energies, and much higher for the deposition of Zn which has a low cohesive energy. The deposition rate for all metals is strongly correlated with the total ablation yield, i.e., the total mass ablated per pulse, reported in the literature except for Sn, for which the deposition rate is low, but the total ablation yield is high. This may be explained by the continuous erosion by nanoparticles during deposition of the Sn films which appear to have a much rougher surface than those of the other metals studied in the present work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H.U. Krebs, in Pulsed Laser Deposition of Thin Films, ed. by R. Eason (Wiley, New York, 2007), p. 363

  2. D. Bäuerle, Laser processing and chemistry, 4th edn. (Springer, London, 2011), p. 759

  3. P.R. Willmott, J.R. Huber, Rev. Mod. Phys. 72, 315 (2000)

    Article  ADS  Google Scholar 

  4. F.A. Döring, A.L. Robisch, C. Eberl et al., Opt Express 21, 19311 (2013)

    Article  ADS  Google Scholar 

  5. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013)

    Article  Google Scholar 

  6. W. Svendsen, O. Ellegaard, J. Schou, Appl. Phys. A 63, 247 (1996)

    Article  ADS  Google Scholar 

  7. T. Hansen, J. Schou, J.G. Lunney, Europhys. Lett. 40, 441 (1997)

    Article  ADS  Google Scholar 

  8. H.U. Krebs, Bremert, Appl. Phys. Lett. 62, 2341 (1993)

    Article  ADS  Google Scholar 

  9. B. Toftmann, J. Schou, S. Canulescu, Appl. Surf. Sci. 278, 273 (2013)

    Article  ADS  Google Scholar 

  10. B. Toftmann, J. Schou, J.G. Lunney, Phys. Rev. B 67, 04101 (2003)

    Article  Google Scholar 

  11. J. Schou, Appl. Surf. Sci. 255, 5191 (2009)

    Article  ADS  Google Scholar 

  12. S. Fähler, S. Kahl, M. Weisheit, K. Sturm, H.U. Krebs, Appl. Surf. Sci. 154, 419 (2000)

    Article  ADS  Google Scholar 

  13. J. Gonzalo, J. Siegel, A. Perea, D. Puerto, V. Resta, M. Galvan-Sosa, C.N. Afonso, Phys. Rev. B 76, 035435 (2007)

    Article  Google Scholar 

  14. K. Sturm, H.U. Krebs, J. Appl. Phys. A 90, 1061 (2001)

    Article  ADS  Google Scholar 

  15. C. Eberl, T. Liese, F. Schlenkrich, F. Döring, H. Hofsäss, H.U. Krebs, Appl. Phys. A 111, 431 (2013)

    Article  ADS  Google Scholar 

  16. S. Amoruso, F. Bruzzese, R. Velotta, N. Spinelli, J. Phys. B 32, R131 (1999)

    Article  ADS  Google Scholar 

  17. J. Lunney, R. Jordan, App. Surf. Sci. 127–129, 941 (1998)

    Article  Google Scholar 

  18. S. Amoruso, J. Appl. Phys. A 69, 323 (1999)

    Article  ADS  Google Scholar 

  19. R.W. Dreyfus, J. Appl. Phys A 69, 1721 (1991)

    Article  ADS  Google Scholar 

  20. P. Sigmund in, Sputtering by Particle Bombardment I, ed. by R. Behrisch (Springer, Berlin-Heidelberg, 1981), p. 9

  21. P. Sigmund, Appl. Phys. Lett. 14, 114 (1969)

    Article  ADS  Google Scholar 

  22. P. Vajda, Rev. Mod. Phys. 49, 481 (1977)

    Article  ADS  Google Scholar 

  23. K. Ujihara, J. Appl. Phys. 453, 2376 (1972)

    Article  ADS  Google Scholar 

  24. I. Yamada, J. Matsuo, Z. Insepov, T. Aoki, T. Seki, N. Toyoda, Nucl. Instrum. Method B 164–165, 944–959 (2000)

    Article  Google Scholar 

  25. P. Balling, J. Schou, Rep. Prog. Phys. 76(036502), 1–39 (2013)

    Google Scholar 

  26. R. Aderjan, H.M. Urbassek, Nucl. Instr. Meth. B 164–165, 697 (2000)

    Article  Google Scholar 

  27. K. Nordlund, K.O.E. Henriksson, J. Keinonen, Appl. Phys. Lett. 79, 3624 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work has been supported by a grant from the Danish Council for Strategic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Cazzaniga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazzaniga, A., Ettlinger, R.B., Canulescu, S. et al. Nanosecond laser ablation and deposition of silver, copper, zinc and tin. Appl. Phys. A 117, 89–92 (2014). https://doi.org/10.1007/s00339-013-8207-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8207-0

Keywords

Navigation