Skip to main content
Log in

Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrashort laser pulses tightly focused inside a transparent material present an example of laser interaction with matter where all the laser-affected material remains inside the bulk, thus the mass is conserved. In this paper, we present the case where the high intensity of a laser pulse is above the threshold for optical breakdown, and the material is ionised in the focal area. We consider in detail a special case where a micro-explosion is formed at the boundary of a silicon surface buried under a 10-micron-thick oxidised layer, providing the opportunity to affect the silicon crystal by a strong shock wave and creating new material phases from the plasma state. We summarise the main conclusions on ultrafast laser-induced material modifications in confined geometry and discuss the prospects of confined micro-explosion for forming new silicon phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. E. Glezer, E. Mazur, Appl. Phys. Lett. 71, 882–884 (1997)

    Article  ADS  Google Scholar 

  2. S. Juodkazis, H. Misawa, E. Gamaly, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. Lett. 96, 166101 (2006)

    Article  ADS  Google Scholar 

  3. S. Juodkazis, H. Misawa, T. Hashimoto, E. Gamaly, B. Luther-Davies, Appl. Phys. Lett. 88, 1 (2006)

    Article  Google Scholar 

  4. E.G. Gamaly, S. Juodkazis, H. Misawa, B. Luther-Davies, L. Hallo, P. Nicolai, V.T. Tikhonchuk, Phys. Rev. B 73, 214101 (2006)

    Article  ADS  Google Scholar 

  5. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949–957 (2002)

    Article  ADS  Google Scholar 

  6. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Electrodynamics of continuous media (Pergamon Press, Oxford, 1984)

    Google Scholar 

  7. E.G. Gamaly, Femtosecond laser–matter interaction: theory, experiments and applications (Pan Stanford Publishing, Singapore, 2011)

    Google Scholar 

  8. E.G. Gamaly, Phys. Rep. 508, 91–243 (2011)

    Article  ADS  Google Scholar 

  9. K. Sokolowski-Tinten, K. J. Bialkowski, A. Cavalieri, M. Boing, H. Schuler, and D. von der Linde, High-power laser ablation, in Proceedings SPIE 3343 Ed. by C. Phipps, Part 1, 46–57 (1998)

  10. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, J. Opt. Soc. Am. B 13, 459–468 (1996)

    Article  ADS  Google Scholar 

  11. W. Kautek, J. Krüger, M. Lenzner, S. Sartania, Ch. Spielmann, F. Krausz, Appl. Phys. Lett. 69, 3146 (1996)

    Article  ADS  Google Scholar 

  12. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, Ch. Spielmann, G. Mourou, W. Kautek, F. Krausz, Phys. Rev. Lett. 80, 4076–4079 (1998)

    Article  ADS  Google Scholar 

  13. An-Chun Tien, S. Backus, H. Kapteyn, M. Murname, G. Mourou, Phys. Rev. Lett. 82, 3883–3886 (1999)

    Article  ADS  Google Scholar 

  14. YuP Raizer, Laser-induced discharge phenomena (Consultant Bureau, New York, 1978)

    Google Scholar 

  15. D. Arnold, E. Cartier, Phys. Rev. B 46, 15102–15115 (1992)

    Article  ADS  Google Scholar 

  16. Y.B. Zel’dovich, Y.P. Raizer, Physics of shock waves and high-temperature hydrodynamic phenomena (Dover, New York, 2002)

    Google Scholar 

  17. K. Eidmann, J. Meyer-ter-Vehn, T. Schlegel, S. Huller, Phys. Rev. E 62, 1202–1214 (2000)

    Article  ADS  Google Scholar 

  18. W.L. Kruer, The physics of laser plasma interactions (Addison-Wesley, New-York, 1988)

    Google Scholar 

  19. E.G. Gamaly, L. Rapp, V. Roppo, S. Juodkazis, A.V. Rode, New. J. Phys. 15, 025018 (2013)

    Article  ADS  Google Scholar 

  20. Sheng-Nian Luo, T.J. Arens, P.D. Asimov, J. Geophys. Res. 108, 2421 (2003)

    Article  ADS  Google Scholar 

  21. S. Brygoo, E. Henry, P. Loubeyre, J. Eggert, M. Koenig, B. Loupias, A. Benuzzi-Mounaix, M.R. Le Gloahec, Nat. Mater. 6, 274–277 (2007)

    Article  ADS  Google Scholar 

  22. D.G. Hicks, P.M. Celliers, G.W. Collins, J.H. Eggert, S.J. Moon, Phys. Rev. Lett. 91, 035502 (2003)

    Article  ADS  Google Scholar 

  23. D.C. Swift, J.A. Hawreliak, D. Braun, A. Kritcher, S. Glenzer, G. Collins, S. D. Rothman, D. Chapman and S. Rose, Gigabar material properties experiments on NIF and Omega. in Shock Compression of Condense Matter2011, AIP Conf. Proc. 1426, 477–480 (2012)

  24. R.F. Trunin, Phys. Uspekhi 37, 1123–1146 (1994)

    Article  ADS  Google Scholar 

  25. A. Vailionis, E.G. Gamaly, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, Nat. Commun. 2, 445 (2011)

    Article  ADS  Google Scholar 

  26. E.N. Glezer, M. Milosavjevic, L. Huang, R.J. Finlay, T.-H. Her, J.P. Callan, E. Masur, Opt. Lett. 21, 2023–2026 (1996)

    Article  ADS  Google Scholar 

  27. S.A. Akhmanov, V.A. Vyspoukh, A.S. Chirkin, Optics of femtosecond laser pulses (Nauka, Moscow, 1988)

    Google Scholar 

  28. V.V. Temnov, K. Sokolowski-Tinten, P. Zhou, A. El-Khamhawy, D. von der Linde, Phys. Rev. Lett. 97, 237403 (2006)

    Article  ADS  Google Scholar 

  29. B.C. Stuart, M.D. Feit, A.M. Rubenchick, B.W. Shore, M.D. Perry, Phys. Rev. Lett. 74, 2248–2251 (1995)

    Article  ADS  Google Scholar 

  30. R.J. Nelmes, D.R. Allan, M.I. McMahon, S.A. Belmonte, Phys. Rev. Lett. 83, 4081 (1999)

    Article  ADS  Google Scholar 

  31. C.J. Pickard, R.J. Needs, Nat. Mater. 9, 624–627 (2010)

    Article  ADS  Google Scholar 

  32. E.G. Gamaly, A. Vailionis, V. Mizeikis, W. Yang, A.V. Rode, S. Juodkazis, High Energy Density Phys. 8, 13–17 (2012)

    Article  ADS  Google Scholar 

  33. L. Bressel, D. de Ligny, E.G. Gamaly, A.V. Rode, S. Juodkazis, Opt. Mat. Express 1, 1150–1157 (2011)

    Article  Google Scholar 

  34. S.J. Lloyd, A. Castellero, F. Giuliani, Y. Long, K.K. McLaughlin, J.M. Molina-Aldareguia, Proc. R. Soc. A 461, 2521–2543 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported under Australian Research Council’s Discovery Project funding scheme (project number DP120102980). Partial support to this work by Air Force Office of Scientific Research, USA (FA9550-12-1-0482) is gratefully acknowledged. We also acknowledge the ANFF ACT Node for the access to their FIB system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei V. Rode.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapp, L., Haberl, B., Bradby, J.E. et al. Confined micro-explosion induced by ultrashort laser pulse at SiO2/Si interface. Appl. Phys. A 114, 33–43 (2014). https://doi.org/10.1007/s00339-013-8161-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8161-x

Keywords

Navigation