Skip to main content
Log in

Novel method to determine the actual surface area of a laser-nanotextured sensor

  • Invited paper
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The actual surface area of a gold-coated conductive layer over the laser nano-textured surface of sapphire is determined using an electrochemical cyclic voltammetry. The method is down scaled to measure the sensing surface area of 200 × 200 μm2 on a laser-ablated ripple sensor used for surface-enhanced Raman spectroscopy/scattering (SERS). Ripple SERS sensors made on different substrates of high refractive index materials such as GaP, diamond, SiC, and Al2O3 make a versatile sensing platform with the detection of analyte (here a thiophenol) down to 10 nM concentrations. Direct measurement of the surface area provides a powerful tool to investigate roughness, porosity, and morphology of coatings used for SERS or other light harvesting surfaces such as solar cells. Novelty of the proposed method is in the use of cathodic peak of surface passivation–activation cycle for calculation of surface charge. The method enables high-accuracy surface area measurements from as small as 0.01 mm2 pads up to functional solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.W. Kho, C.Y. Fu, U.S. Dinish, M. Olivo, Clinical SERS: are we there yet? J. Biophoton 4(10), 667–684 (2011)

    Article  Google Scholar 

  2. M. Moskovits, Surface-enhanced Raman spectroscopy: a brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005)

    Article  ADS  Google Scholar 

  3. K. Juodkazis, J. Juodkazytė, P. Kalinauskas, E. Jelmakas, S. Juodkazis, Photoelectrolysis of water: Solar hydrogen—achievements and perspectives. Opt. Express: Energy Express 18, A147–A160 (2010)

    Article  Google Scholar 

  4. M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163–166 (1973)

    Article  ADS  Google Scholar 

  5. H.X. Xu, J. Aizpurua, M. Käll, P. Apell Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E 62, 4318–4324 (2000)

    Article  ADS  Google Scholar 

  6. D.A. Genov, A.K. Sarychev, V.M. Shalaev, A. Wei, Resonant field enhancements from metal nanoparticle arrays. Nano. Lett. 4(1), 153–158 (2004)

    Article  ADS  Google Scholar 

  7. J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, P.N.F. Capasso, N.J. Halas, Fano resonances in plasmonic nanoclusters: Geometrical and chemical tunability. Nano. Lett. 10(8), 3184–3189 (2010)

    Article  ADS  Google Scholar 

  8. Y. Sonnefraud, N. Verellen, H. Sobhani, G.A. Vandenbosch, V.V. Moshchalkov, P.V. Dorpe, P. Nordlander, S.A. Maier Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano. 4(3), 1664–1670 (2008)

    Article  Google Scholar 

  9. E. Zachariah, A. Bankapur, C. Santhosh, M. Valiathan, D. Mathur, Probing oxidative stress in single erythrocytes with Raman tweezers. J. Photochem. Photobiol. B Biol. 100, 113–116 (2010)

    Article  Google Scholar 

  10. A.J. Hobro, A. Konishi, C. Coban, N.I. Smith, Raman spectroscopic analysis of malaria disease progression via blood and plasma samples. Analyst 138(14), 3927–3933 (2013).

    Google Scholar 

  11. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, H. Misawa, Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths. Adv. Mater. 20(1), 26–29 (2008)

    Article  Google Scholar 

  12. Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, J. Nishii, Nano-textured metallic surfaces for optical sensing and detection applications. J. Photochem. Photobiol. A 207, 126–134 (2009)

    Article  Google Scholar 

  13. Y. Nishijima, J.B. Khurgin, L. Rosa, H. Fujiwara, S. Juodkazis, Randomization of gold nano-brick arrays: a tool for SERS enhancement. Opt. Express 21(11), 13502–13514 (2013)

    Article  ADS  Google Scholar 

  14. R. Buividas, P.R. Stoddart, S. Juodkazis, Laser fabricated ripple substrates for surface-enahnced Raman scattering. Ann. Phys 524(11), L5–L10 (2012)

    Article  ADS  Google Scholar 

  15. J.M. Doña Rodríguez, J.A. Herrera Melián, J. Pérez Peña, Determination of the real surface area of pt electrodes by hydrogen adsorption using cyclic voltammetry. J. Chem. Educ. 77(9), 1195 (2000)

    Article  Google Scholar 

  16. A. Michri, A. Pshenichnikov, R.K Burshtein, Determination of the true surface of smooth au electrodes. Elektrokhimiya 8(3), 364–366 (1972)

    Google Scholar 

  17. S. Trasatti, O. Petrii, Real surface area measurements in electrochemistry. Pure Appl. Chem. 63(5), 711–734 (1991)

    Article  Google Scholar 

  18. D. Rand, R. Woods J, Electroanal. Chem. 31, 29 (1971)

    Article  Google Scholar 

  19. K. Juodkazis, J. Juodkazytė, T. Juodienė, V. Šukienė, I. Savickaja, Alternative view of anodic surface oxidation of noble metals. Electrochimica Acta. 51(27), 6159–6164 (2006)

    Article  Google Scholar 

  20. K. Juodkazis, J.B. Šebeka, A. Lukinskas, Evaluation of the thickness of au(iii) hydroxide surface layer anodically formed on gold electrode. Chemija 9, 46 (1998)

    Google Scholar 

  21. H. Angerstein-Kozlowska, Comprehensive treaties of electrochemistry, vol. 9. (Plenum Press, New York, 1985)

  22. J.R. Anderson, Structure of metallic catalysts, (Academic Press, London, 1975)

  23. R. Buividas, L. Rosa, R. Šliupas, T. Kudrius, G. Šlekys, V. Datsyuk, S. Juodkazis, Mechanism of fine ripple formation on surfaces of (semi)transparent materials via a half-wavelength cavity feedback. Nanotechnology 22, 055304 (2011)

    Article  ADS  Google Scholar 

  24. A. Chou, E. Jaatinen, R. Buividas, G. Seniutinas, S. Juodkazis, E.L. Izake, P.M. Fredericks, SERS substrate for detection of explosives. Nanoscale 4(23), 7419–7424 (2012)

    Article  ADS  Google Scholar 

  25. R. Buividas, N. Fahim, B. Jia, M. Gu, S. Juodkazis, Accurate measurement of the surface area of solar cells, in book of abstracts, Solar 2012, (Melbourne, 2012)

  26. R. Buividas, M. Mikutis, T. Kudrius, A. Greičius, G. Šlekys, S. Juodkazis, Femtosecond laser processing—a new enabling technology. Lith. J. Phys. 57(4), 301–311 (2013)

    Google Scholar 

  27. A. Žukauskas, M. Malinauskas, A. Kadys, G. Gervinskas, G. Seniutinas, S. Kandasamy, S. Juodkazis, Black silicon: substrate for laser 3D micro/nano-polymerization. Opt. Express 21(6), 6901–6909 (2013)

    Article  ADS  Google Scholar 

  28. G. Gervinskas, G. Seniutinas, J.S. Hartley, S. Kandasamy, P.R. Stoddart, N.F. Fahim, S. Juodkazis, Surface-enhanced Raman scattering sensing on black silicon. Ann. Phys. (2013). doi:10.1002/andp.201300035

    Google Scholar 

  29. M.M. Islam, K. Ueno, S. Juodkazis, Y. Yokota, H. Misawa, Development of interdigitated array electrodes with SERS functionality. Anal. Sci. 26, 13–18 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

Support via Australian Research Council DP120102980 grant and a collaborative project with Altechna Ltd. are gratefully acknowledged. We are grateful to Kestutis Juodkazis for the guidance through setting up electrochemical experimental and surface charge determination and to Paul R. Stoddart for access to Raman microscope and discussions. RB made and characterized samples and carried out electrochemical measurements together with FN, JJ developed methodology of electrochemical measurements, SJ initiated the study. All the authors contributed to writing and editing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ričardas Buividas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buividas, R., Fahim, N., Juodkazytė, J. et al. Novel method to determine the actual surface area of a laser-nanotextured sensor. Appl. Phys. A 114, 169–175 (2014). https://doi.org/10.1007/s00339-013-8129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8129-x

Keywords

Navigation