Skip to main content
Log in

Fabrication, morphologies and structural characterization of InN nanowire arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Large-scale, uniform diameter, and high-aligned metal indium was first introduced into the nanochannels of anodic aluminum membrane by electrochemical deposition. InN nanowires were achieved by the reaction of indium vapor with a constant flowing ammonia atmosphere. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to measure the size and structure of the sample. The results show that InN nanowires were aligned in the nanochannels of the template and the diameters were about 40 nm. Raman-scattering spectrum of InN nanowire array is presented. The \({ A}_{1}\)(TO), \({ E}_{1}\)(TO), and \({ E}_{2}\)(high) phonon frequencies at 440, 472, and 490 cm\(^{-1}\) were observed. The Raman spectrum of the InN nanowire arrays is consistent with the hexagonal wurtzite structure bulk InN, in agreement with X-ray diffraction observation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992)

    Article  Google Scholar 

  2. S.K. O’Leary, B.E. Foutz, M.S. Shur, U.V. Bhapkar, L.F. Eastman, J. Appl. Phys. 83, 826 (1998)

    Article  ADS  Google Scholar 

  3. S.D. Dingman, N.P. Rath, P.D. Markowitz, P.C. Gibbons, W.E. Buhro, Angew. Chem. Int. Ed. 39, 1470 (2000)

    Article  Google Scholar 

  4. C.H. Liang, L.C. Chen, J.S. Huang, K.H. Chen, Y.T. Hang, Y.F. Chen, Appl. Phys. Lett. 81, 22 (2002)

    Article  ADS  Google Scholar 

  5. J. Zhang, L.D. Zhang, J. Mater. Chem. 12, 802 (2002)

    Article  Google Scholar 

  6. J. Wu, W. Walukiewicz, K.M. Yu, J.W. AgerIII, E.E. Haller, H. Lu, W.J. Schaff, Y. Saito, Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002)

    Article  ADS  Google Scholar 

  7. L.W. Yin, Y. Bando et al., Adv. Mater. 16, 1833 (2004)

    Article  Google Scholar 

  8. M.C. Johnson, C.L. Lee et al., Appl. Phys. Lett. 85, 5670 (2004)

    Article  ADS  Google Scholar 

  9. L.W. Yin, Y. Bando et al., Appl. Phys. Lett. 84, 1546 (2004)

    Article  ADS  Google Scholar 

  10. J. Zhang, B.L. Xu, F.H. Jiang, Y.D. Yang, J.P. Li, Phys. Lett. A 337, 121 (2005)

    Article  ADS  Google Scholar 

  11. T. Tang, S. Han, W. Jin et al., J. Mater. Res. 19, 423 (2004)

    Article  ADS  Google Scholar 

  12. H. Masuda, K. Fukuda, Science 268, 1466 (1995)

    Article  ADS  Google Scholar 

  13. D.N. Davydov, P.A. Sattari, D. AlMawlawi, A. Osika, T.L. Haslett, M. Moskovits, J. Appl. Phys. 86, 3983 (1999)

    Article  ADS  Google Scholar 

  14. J. Haruyama, D.N. Davydov, D. Routkevitch, D. Ellis, B.W. Statt, M. Moskovits, J.M. Xu, Solid-State Electron 42, 1257 (1998)

    Article  ADS  Google Scholar 

  15. A.P. Li, F. Muller, A. Birner, K. Nielsch, U. Gosele, Adv. Mater. 11, 483 (1999)

    Article  Google Scholar 

  16. JCPDS—International Centre for Diffraction Data. American Society for Testing and Material, Powder Diffraction File. Inorganic, vol. 2–1450 file. (Joint Committee on Powder Diffraction Standards, USA) (1998)

  17. J.S. Dyck, K. Kash, K. Kim, W.R.L. Lambrecht, C.C. Hayman, A. Argoitia, M.T. Grossner, W.L. Zhou, J.C. Angus, Mater. Res. Soc. Symp. Proc. 482, 549 (1998)

    Article  Google Scholar 

  18. T. Inushima, T. Shiraishi, V.Yu. Davydov, Solid State Commun. 110, 149 (1999)

  19. G. Kaczmarczyk, A. Kaschner, S. Reich, A. Hoffmann et al., Appl. Phys. Lett. 76, 2122 (2000)

    Article  ADS  Google Scholar 

  20. F. Agullo-Rueda, E.E. Mendez, B. Bojarczuk, S. Guha, Solid State Commun. 115, 19 (2000)

    Article  ADS  Google Scholar 

  21. J.S. Dyck, K. Kim, S. Limpijumnong, W.R.L. Lambrecht, K. Kash, J.C. Angus, Solid State Commun. 114, 355 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 60277023) and Shandong Provincial Natural Science Foundation of China (Grant No. ZR2011FM007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Jiang, F. & Sun, T. Fabrication, morphologies and structural characterization of InN nanowire arrays. Appl. Phys. A 116, 207–211 (2014). https://doi.org/10.1007/s00339-013-8094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-8094-4

Keywords

Navigation