Skip to main content
Log in

On the buckling behavior of connected carbon nanotubes with parallel longitudinal axes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The application of hetero-junction carbon nanotubes (CNTs) is increasing continuously due to their outstanding properties in nano-mechanical systems. Several investigations have been conducted to study the behavior of CNTs. In this paper, straight hetero-junctions and their constituent CNTs (armchair and zigzag) were simulated by a commercial finite element package. Then, the buckling behavior of CNTs was evaluated by comparing the critical buckling load of each straight hetero-junction and its constituent CNTs. Both obtained, i.e. analytical calculations and computational, results were compared. The investigations showed that, first, the behavior of homogeneous CNTs under cantilevered boundary conditions follows the assumption of the classical Euler equation. Second, the analytical solutions are in good agreement with the finite element simulation results. In addition, it was shown that the first critical buckling load of hetero-junctions lies within the value of the fundamental homogeneous CNT range. It was also concluded that the buckling load of straight hetero-junctions and their fundamental CNTs increases by increasing the chiral number of both armchair and zigzag CNTs. The current study provides a better insight towards the prediction of straight hetero-junction CNTs behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. P.J.F. Harris, Int. Mater. Rev. 49, 31 (2004)

    Article  Google Scholar 

  3. A. Ghavamian, M. Rahmandoust, A. Öchsner, Comput. Mater. Sci. 62, 110 (2012)

    Article  Google Scholar 

  4. M. Rahmandoust, A. Öchsner, Nano Res. 6, 185 (2009)

    Article  Google Scholar 

  5. Y. Wang, X. Wang, X. Ni, H. Wu, Comput. Mater. Sci. 32, 141 (2005)

    Article  Google Scholar 

  6. K.I. Tserpes, P. Papanikos, Composites, Part B, Eng. 36, 468 (2005)

    Article  Google Scholar 

  7. J.R. Xiao, B.A. Gama, J.W. Gillespie Jr., Int. J. Solids Struct. 42, 3075 (2005)

    Article  MATH  Google Scholar 

  8. T. Chang, G. Li, X. Guo, Carbon 43, 287 (2005)

    Article  Google Scholar 

  9. X. Yao, Q. Han, H. Xin, Comput. Mater. Sci. 43, 579 (2008)

    Article  Google Scholar 

  10. V. Parvaneh, M. Shariati, A.M. Majd Sabeti, Eur. J. Mech. A, Solids 28, 1072 (2009)

    Article  ADS  MATH  Google Scholar 

  11. Z. Kang, M. Li, Q. Tang, Comput. Mater. Sci. 50, 253 (2010)

    Article  Google Scholar 

  12. C.H. Wong, V. Vijayaraghavan, Comput. Mater. Sci. 53, 268 (2012)

    Article  Google Scholar 

  13. M.M.S. Fakhrabadi, N. Khani, R. Omidvar, A. Rastgoo, Comput. Mater. Sci. 61, 248 (2012)

    Article  Google Scholar 

  14. A. Ghavamian, A. Öchsner, Physica E 46, 241 (2012)

    Article  ADS  Google Scholar 

  15. M. Li, Z. Kang, P. Yang, X. Meng, Y. Lu, Comput. Mater. Sci. 67, 390 (2013)

    Article  Google Scholar 

  16. P.H. Lambin, F. Triozon, V. Meunier, in Carbon Nanotubes, ed. by V.N. Popov, P. Lambin (Springer, Dordrecht, 2006), p. 123

    Chapter  Google Scholar 

  17. A. Ghavamian, A. Öchsner, Comput. Mater. Sci. 72, 42 (2013)

    Article  Google Scholar 

  18. Z. Qin, Q.H. Qin, X.Q. Feng, Phys. Lett. A 372, 6661 (2008)

    Article  ADS  MATH  Google Scholar 

  19. C. Li, T.-W. Chou, Int. J. Solids Struct. 40, 2487 (2003)

    Article  MATH  Google Scholar 

  20. S. Melchor, J.A. Dobado, J. Chem. Inf. Comput. Sci. 44, 1639 (2004)

    Article  Google Scholar 

  21. S. Melchor, F.J. Martin-Martinez, J.A. Dobado, J. Chem. Inf. Model. 51, 1492 (2011)

    Article  Google Scholar 

  22. M. Rahmandoust, A. Öchsner, Nano Res. 16, 153 (2011)

    Article  Google Scholar 

  23. C.W.S. To, Finite Elem. Anal. Des. 42, 404 (2006)

    Article  Google Scholar 

  24. B.I. Yakobson, P. Avouris, in Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, ed. by M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Springer, Berlin, 2001), p. 287

    Chapter  Google Scholar 

  25. A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Int. J. Solids Struct. 43, 6832 (2006)

    Article  MATH  Google Scholar 

  26. M. Rahmandoust, A. Öchsner, J. Nanosci. Nanotech. 12 (2012)

  27. J.P. Lu, Phys. Rev. Lett. 79, 1297 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadegh Imani Yengejeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imani Yengejeh, S., Akbar Zadeh, M. & Öchsner, A. On the buckling behavior of connected carbon nanotubes with parallel longitudinal axes. Appl. Phys. A 115, 1335–1344 (2014). https://doi.org/10.1007/s00339-013-7999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7999-2

Keywords

Navigation