Skip to main content
Log in

Improving dopant incorporation during femtosecond-laser doping of Si with a Se thin-film dopant precursor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We study the dopant incorporation processes during thin-film fs-laser doping of Si and tailor the dopant distribution through optimization of the fs-laser irradiation conditions. Scanning electron microscopy, transmission electron microscopy, and profilometry are used to study the interrelated dopant incorporation and surface texturing mechanisms during fs-laser irradiation of Si coated with a Se thin-film dopant precursor. We show that the crystallization of Se-doped Si and micrometer-scale surface texturing are closely coupled and produce a doped surface that is not conducive to device fabrication. Next, we use this understanding of the dopant incorporation process to decouple dopant crystallization from surface texturing by tailoring the irradiation conditions. A low-fluence regime is identified in which a continuous surface layer of doped crystalline material forms in parallel with laser-induced periodic surface structures over many laser pulses. This investigation demonstrates the ability to tailor the dopant distribution through a systematic investigation of the relationship between fs-laser irradiation conditions, microstructure, and dopant distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.H. Pan, D. Recht, S. Charnvanichborikarn, J.S. Williams, M.J. Aziz, Appl. Phys. Lett. 98, 121913 (2011)

    Article  ADS  Google Scholar 

  2. C.H. Crouch, J.E. Carey, M. Shen, E. Mazur, F.Y. Génin, Appl. Phys. A, Mater. Sci. Process. 79, 1635 (2004)

    Article  ADS  Google Scholar 

  3. J.E. Carey, C.H. Crouch, M. Shen, E. Mazur, Opt. Lett. 30, 1773 (2005)

    Article  ADS  Google Scholar 

  4. A.J. Said, D. Recht, J.T. Sullivan, J.M. Warrender, T. Buonassisi, P.D. Persans, M.J. Aziz, Appl. Phys. Lett. 99, 073503 (2011)

    Article  Google Scholar 

  5. S. Hu, P. Han, S. Wang, X. Mao, X. Li, L. Gao, Semicond. Sci. Technol. 27, 102002 (2012)

    Article  ADS  Google Scholar 

  6. A. Luque, A. Martí, Phys. Rev. Lett. 78, 5014 (1997)

    Article  ADS  Google Scholar 

  7. M.A. Sheehy, B.R. Tull, C.M. Friend, E. Mazur, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 137, 289 (2007)

    Article  Google Scholar 

  8. M.J. Sher, M.T. Winkler, E. Mazur, Mater. Res. Soc. Bull. 36, 439 (2011)

    Article  Google Scholar 

  9. B.R. Tull, M.T. Winkler, E. Mazur, Appl. Phys. A, Mater. Sci. Process. 96, 327 (2009)

    Article  ADS  Google Scholar 

  10. M.T. Winkler, M.J. Sher, Y.T. Lin, M.J. Smith, H. Zhang, S. Gradečak, E. Mazur, J. Appl. Phys. 111, 093511 (2012)

    Article  ADS  Google Scholar 

  11. V. Zorba, I. Alexandrou, I. Zergioti, A. Manousaki, C. Ducati, A. Neumeister, C. Fotakis, G.A.J. Amaratunga, Thin Solid Films 453–454, 492 (2004)

    Article  Google Scholar 

  12. M.J. Smith, M.T. Winkler, M.J. Sher, Y.T. Lin, E. Mazur, S. Gradečak, Appl. Phys. A, Mater. Sci. Process. 105, 795 (2011)

    Article  ADS  Google Scholar 

  13. S. Hu, P. Han, S. Wang, X. Mao, X. Li, L. Gao, Phys. Status Solidi A 209, 2521 (2012)

    Article  ADS  Google Scholar 

  14. B.P. Bob, A. Kohno, S. Charnvanichborikarn, J.M. Warrender, I. Umezu, M. Tabbal, J.S. Williams, M.J. Aziz, J. Appl. Phys. 107, 123506 (2010)

    Article  ADS  Google Scholar 

  15. T.G. Kim, J.M. Warrender, M.J. Aziz, Appl. Phys. Lett. 88, 3 (2006)

    Google Scholar 

  16. M. Tabbal, T.G. Kim, D.N. Woolf, B. Shin, M.J. Aziz, Appl. Phys. A, Mater. Sci. Process. 98, 589 (2010)

    Article  ADS  Google Scholar 

  17. A.L. Baumann, K.M. Guenther, P. Saring, T. Gimpel, S. Kontermann, M. Seibt, W. Schade, Energy Procedia 27, 480 (2012)

    Article  Google Scholar 

  18. S. Kontermann, T. Gimpel, A.L. Baumann, K.M. Guenther, W. Schade, Energy Procedia 27, 390 (2012)

    Article  Google Scholar 

  19. K. Affolter, W. Luthy, M. Von Allmen, Appl. Phys. Lett. 33, 185 (1978)

    Article  ADS  Google Scholar 

  20. G.E. Jellison Jr., D.H. Lowndes, Appl. Phys. Lett. 51, 352 (1987)

    Article  ADS  Google Scholar 

  21. M. de Selincourt, Proc. Phys. Soc. 52, 348 (1940)

    Article  ADS  Google Scholar 

  22. A. Borowiec, M. MacKenzie, G.C. Weatherly, H.K. Haugen, Appl. Phys. A, Mater. Sci. Process. 76, 201 (2003)

    Article  ADS  Google Scholar 

  23. B.R. Tull, J.E. Carey, E. Mazur, J. McDonald, S.M. Yalisove, Mater. Res. Soc. Bull. 31, 7 (2006)

    Article  Google Scholar 

  24. M.J. Smith, Y.T. Lin, M.J. Sher, M.T. Winkler, E. Mazur, S. Gradečak, J. Appl. Phys. 110, 053524 (2011)

    Article  ADS  Google Scholar 

  25. M.J. Smith, M.J. Sher, B. Franta, Y.T. Lin, E. Mazur, S. Gradečak, J. Appl. Phys. 112, 083518 (2012)

    Article  ADS  Google Scholar 

  26. M.J. Aziz, T. Kaplan, Acta Metall. 36, 2335 (1988)

    Article  Google Scholar 

  27. E.P. Fogarassy, D.H. Lowndes, J. Narayan, C.W. White, J. Appl. Phys. 58, 2167 (1985)

    Article  ADS  Google Scholar 

  28. G.L. Olson, J.A. Roth, Mater. Sci. Rep. 3, 1 (1988)

    Article  Google Scholar 

  29. J. Bonse, M. Munz, H. Sturm, J. Appl. Phys. 97, 013538 (2005)

    Article  ADS  Google Scholar 

  30. Z. Guosheng, P.M. Fauchet, A.E. Siegman, Phys. Rev. B 26, 5366 (1982)

    Article  ADS  Google Scholar 

  31. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141 (1983)

    Article  ADS  Google Scholar 

  32. F.J. Lopez, E.R. Hemesath, L.J. Lauhon, Nano Lett. 9, 2774 (2009)

    Article  ADS  Google Scholar 

  33. A. Cavalleri, K. Sokolowski-Tinten, J. Bialkowski, M. Schreiner, D. von der Linde, J. Appl. Phys. 85, 3301 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge valuable discussions with Kasey Phillips. This work was supported by the Chesonis Family Foundation, the National Science Foundation (NSF) ERC-QESST (EEC-1041895), and NSF awards CBET 0754227 and CHE-DMR-DMS 0934480. This research was also made with additional support through the National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a, and the R.J. McElroy Trust. We acknowledge valuable use of MIT CMSE Shared Experimental Facilities, under MIT NSF MRSEC grant # DMR-08-19762, and the Harvard Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN), which is supported by NSF Award No. ECS-0335765.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Smith.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(PDF 117 kB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, M.J., Sher, MJ., Franta, B. et al. Improving dopant incorporation during femtosecond-laser doping of Si with a Se thin-film dopant precursor. Appl. Phys. A 114, 1009–1016 (2014). https://doi.org/10.1007/s00339-013-7673-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7673-8

Keywords

Navigation