Skip to main content
Log in

Interplay of the doped Ge atoms and the N vacancies with the negative thermal expansion of M3(Cu1−x Ge x )N1−y

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The giant negative thermal expansion (NTE) found in the anti-perovskite manganese nitride could be controlled by the content of the doped Ge and the vacancies of N. In this paper, the origin of such a tunable thermal expansion behavior is systematically studied. Our calculations indicate that the doped Ge atoms enhance the NTE property of the compound, and the existing N vacancies have a weak influence on the NTE property. Furthermore, the change of the exchange parameters between Mn ions with the content of the doped Ge as well as with the N vacancies in the compound is revealed, from which the relative stabilities of different magnetic phases in the concerned compounds can be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. Takenaka, H. Takagi, Appl. Phys. Lett. 87, 261902 (2005)

    Article  ADS  Google Scholar 

  2. J. Matsuno, K. Takenaka, H. Takagi, D. Matsumura, Y. Nishihata, J. Mizuki, Appl. Phys. Lett. 94, 181904 (2009)

    Article  ADS  Google Scholar 

  3. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, S. Shamoto, Phys. Rev. B 77, 020409(R) (2008)

    Article  ADS  Google Scholar 

  4. S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, S. Shamoto, Phys. Rev. Lett. 101, 205901 (2008)

    Article  ADS  Google Scholar 

  5. Y. Nakamura, K. Takenaka, A. Kishimoto, H. Takagi, J. Am. Ceram. Soc. 92, 2999 (2009)

    Article  Google Scholar 

  6. J.R. Salvador, F. Guo, T. Hogan, M.G. Kanatzidis, Nature (London) 425, 702 (2003)

    Article  ADS  Google Scholar 

  7. T. Suzuki, A. Omote, J. Am. Ceram. Soc. 89, 691 (2006)

    Article  Google Scholar 

  8. K. Kodama, S. Iikubo, K. Takenaka, M. Takigawa, H. Takagi, S. Shamoto, Phys. Rev. B 81, 224419 (2010)

    Article  ADS  Google Scholar 

  9. X.Y. Song, Z.H. Sun, Q.Z. Huang, M. Rettenmayr, M.X. Liu, M. Seyring, G.N. Li, G.H. Rao, F.X. Yin, Adv. Mater. 23, 4690 (2011)

    Article  Google Scholar 

  10. K. Takenaka, H. Takagi, Appl. Phys. Lett. 94, 131904 (2009)

    Article  ADS  Google Scholar 

  11. C. Wang, L. Chu, Q. Yao, Y. Sun, M. Wu, L. Ding, J. Yan, Y. Na, W. Tang, G. Li, Q. Huang, J.W. Lynn, Phys. Rev. B 85, 220103(R) (2012)

    Article  ADS  Google Scholar 

  12. Z.H. Sun, X.Y. Song, L.L. Xu, Ceram. Int. 37, 1693 (2011)

    Article  Google Scholar 

  13. D. Kasugai, A. Ozawa, T. Inagaki, K. Takenaka, J. Appl. Phys. 111, 07E314 (2012)

    Article  Google Scholar 

  14. G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)

    Article  ADS  Google Scholar 

  15. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  16. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  17. B.Y. Qu, B.C. Pan, J. Appl. Phys. 108, 113920 (2010)

    Article  ADS  Google Scholar 

  18. L. Hua, L. Wang, L.F. Chen, J. Phys. Condens. Matter 22, 206003 (2010)

    Article  ADS  Google Scholar 

  19. Y.-M. Zhou, D.-S. Wang, Y. Kawazoe, Phys. Rev. B 59, 8387 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the University of Science and Technology of China, National Science Foundation of China (Grant No. NSFC10974184). B.C. Pan is grateful for the support of the National Basic Research Program of China (2009CB939901). The super-computational center at USTC supported our computations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, B.Y., He, H.Y. & Pan, B.C. Interplay of the doped Ge atoms and the N vacancies with the negative thermal expansion of M3(Cu1−x Ge x )N1−y . Appl. Phys. A 114, 785–791 (2014). https://doi.org/10.1007/s00339-013-7650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-013-7650-2

Keywords

Navigation