Skip to main content

Advertisement

Log in

High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Here for the first time we describe the use of high resolution nanoprobe X-ray fluorescence (XRF) mapping for the analysis of artists’ paints, hierarchically complex materials typically composed of binder, pigments, fillers, and other additives. The work undertaken at the nanoprobe sought to obtain highly spatially resolved, highly sensitive mapping of metal impurities (Pb, Cd, Fe, and other metals) in submicron particles of zinc oxide pigments used in early 20th century artists’ tube paints and enamel paints, with particular emphasis on Ripolin, a popular brand of French house paint used extensively by Pablo Picasso and some of his contemporaries. Analysis revealed that the Zn oxide particles only contain a little Fe, proving that the highest quality Zn oxide pigment, free of Pb and Cd, was used for Ripolin house paints as well as artists’ paints. Nanoprobe XRF mapping also demonstrated that artists’ tube paints generally have more abundant fillers and additional whites (based on Pb, Ti, Ca) than Ripolin paints, which contain mostly pure zinc oxide. The chemical characterization of paints at the nanoscale opens the path to a better understanding of their fabrication and chemical reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.K. Delaney, J.G. Zeibel, M. Thoury, R. Littleton, M. Palmer, K.M. Morales, E.R. de la Rie, A. Hoenigswald, Appl. Spectrosc. 64, 584 (2010)

    Article  ADS  Google Scholar 

  2. G.S. Hall, J. Tinklenberg, J. Anal. At. Spectrom. 18, 775 (2003)

    Article  Google Scholar 

  3. K. Trentelman, M. Bouchard, M. Ganio, C. Namowicz, C.S. Patterson, M. Walton, X-Ray Spectrom. 39, 159 (2010)

    Article  Google Scholar 

  4. M. Alfeld, K. Janssens, J. Dik, W. de Nolf, G. van der Snickt, J. Anal. At. Spectrom. 26, 899 (2011)

    Article  Google Scholar 

  5. F. Casadio, L. Toniolo, J. Cult. Herit. 2, 71 (2001)

    Article  Google Scholar 

  6. S.E.J. Bell, L.A. Fido, S.J. Speers, W.J. Armstrong, S. Spratt, Appl. Spectrosc. 59, 1340 (2005)

    Article  ADS  Google Scholar 

  7. L. Burgio, R.J. Clark, Spectrochim. Acta Part A 57, 1491 (2001)

    Article  ADS  Google Scholar 

  8. I.M. Bell, R.J.H. Clark, P.J. Gibbs, Spectrochim. Acta Part A 53, 2159 (1997)

    Article  ADS  Google Scholar 

  9. M. Cotte, J. Susini, J. Dik, K. Janssens, Acc. Chem. Res. 43, 705 (2010)

    Article  Google Scholar 

  10. L. Monico, G. Van der Snickt, K. Janssens, W. De Nolf, C. Miliani, J. Verbeeck, H. Tian, H. Tan, J. Dik, M. Radepont, M. Cotte, Anal. Chem. 83, 1214 (2011)

    Article  Google Scholar 

  11. L. Monico, G. Van der Snickt, K. Janssens, W. De Nolf, C. Miliani, J. Dik, M. Radepont, E. Hendriks, M. Geldof, M. Cotte, Anal. Chem. 83, 1224 (2011)

    Article  Google Scholar 

  12. W.C. McCrone, J.G. Delly, S.J. Palenik, The Particle Atlas: An Encyclopaedia of Small Particle Identification. Light Microscopy Atlas and Techniques, vol. 5 (Ann Arbor Science, Ann Arbor, 1979)

    Google Scholar 

  13. J.L. Provis, V. Rose, S.A. Bernal, J.S.J. van Deventer, Langmuir 25, 11897 (2009)

    Article  Google Scholar 

  14. D. Comelli, A. Nevin, A. Brambilla, I. Osticioli, G. Valentini, L. Toniolo, M. Fratelli, R. Cubeddu, Appl. Phys. A 106, 25 (2012)

    Article  ADS  Google Scholar 

  15. M. Thoury, J.-P. Echard, M. Réfrégiers, B. Berrie, A. Nevin, F. Jamme, L. Bertrand, Anal. Chem. 83, 1737 (2011)

    Article  Google Scholar 

  16. S.H. Mousavi, H. Haratizadeh, H. Minaee, Opt. Commun. 284, 3558 (2011)

    Article  ADS  Google Scholar 

  17. R.L. Feller (ed.), Artists’ Pigments, Vol. 1: A Handbook of Their History and Characteristics (Cambridge University Press, Cambridge, 1987)

    Google Scholar 

  18. ANON, L’écho Des Peintres (1909)

  19. A.C. Downs, Bull. Assoc. Preserv. Technol. 8, 80 (1976)

    Article  Google Scholar 

  20. Picasso Express (Musée Picasso, Antibes, 2011)

  21. K. Muir, G. Gautier, F. Casadio, A. Vila, in ICOM Commitee for Conservation Preprints (Critério—Artes Gráficas, Lda, Lisbon, 2011) (CD-ROM)

    Google Scholar 

  22. G. Gautier, A. Bezur, K. Muir, F. Casadio, I. Fiedler, Appl. Spectrosc. 63, 597 (2009)

    Article  ADS  Google Scholar 

  23. N. Heaton, Outlines of Paint Technology, 3rd edn. (Charles Griffin & Co., London, 1947). Thoroughly Revised, Etc.

    Google Scholar 

  24. C.T. Morley-Smith, J. Oil Colour Chem. Assoc. 41, 85 (1958)

    Google Scholar 

  25. M. Fauve, J. Vandemaele, in Contributions to the 7th FATIPEC Congress in Vichy (Fédération d’Associations de Techniciens des Industries des Peintures, Vernis, Emaux et Encres d’Imprimerie de l’Europe Continentale, Paris, 1964), pp. 233–244

    Google Scholar 

  26. R.P. Winarski, M.V. Holt, V. Rose, F. Fuesz, D. Carbaugh, C. Benson, D. Shu, G.B. Stephenson, I. McNulty, J. Maser, J. Synchrotron Radiat. 19, 1056 (2012)

    Article  Google Scholar 

  27. S. Vogt, J. Phys. IV 104, 635 (2003)

    Google Scholar 

  28. S. Vogt, personal communication. Data measured at beamline 2-ID-E of the Advanced Photon Source at Argonne National Laboratory

  29. B.L. Henke, E.M. Gullikson, J.C. Davis, At. Data Nucl. Data Tables 54(2), 181–342 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Jerald Kavich and Gwénaëlle Gautier are gratefully acknowledged for assistance with the experimental work. Anna Vila is thanked for STEM images of zinc white paints; John Delaney and Michael Palmer at the National Gallery, Washington DC, for SEM/EDX images; and Mathieu Thoury for preliminary luminescence measurements. Michael Skalka, also of the National Gallery, Washington DC, is thanked for providing a sample of American Ripolin. Jean-Louis Andral (Musée Picasso Antibes), Gilles Barabant and colleagues (C2RMF) are gratefully acknowledged for the availability of the Antibes sample. Kimberley Muir is thanked for research on historical production of Zn oxide. Use of the Advanced Photon Source and the Center for Nanoscale Materials, Office of Science User Facilities operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357. Scientific research at the Art Institute of Chicago is generously supported by the A.W. Mellon Foundation, the Grainger Foundation, the Barker Welfare Foundation, and the Stockman Family Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Casadio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadio, F., Rose, V. High-resolution fluorescence mapping of impurities in historical zinc oxide pigments: hard X-ray nanoprobe applications to the paints of Pablo Picasso. Appl. Phys. A 111, 1–8 (2013). https://doi.org/10.1007/s00339-012-7534-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7534-x

Keywords

Navigation