Skip to main content
Log in

Study of the temperature distribution in Si nanowires under microscopic laser beam excitation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The use of laser beams as excitation sources for the characterization of semiconductor nanowires (NWs) is largely extended. Raman spectroscopy and photoluminescence (PL) are currently applied to the study of NWs. However, NWs are systems with poor thermal conductivity and poor heat dissipation, which result in unintentional heating under the excitation with a focused laser beam with microscopic size, as those usually used in microRaman and microPL experiments. On the other hand, the NWs have subwavelength diameter, which changes the optical absorption with respect to the absorption in bulk materials. Furthermore, the NW diameter is smaller than the laser beam spot, which means that the optical power absorbed by the NW depends on its position inside the laser beam spot. A detailed analysis of the interaction between a microscopic focused laser beam and semiconductor NWs is necessary for the understanding of the experiments involving laser beam excitation of NWs. We present in this work a numerical analysis of the thermal transport in Si NWs, where the heat source is the laser energy locally absorbed by the NW. This analysis takes account of the optical absorption, the thermal conductivity, the dimensions, diameter and length of the NWs, and the immersion medium. Both free standing and heat-sunk NWs are considered. Also, the temperature distribution in ensembles of NWs is discussed. This analysis intends to constitute a tool for the understanding of the thermal phenomena induced by laser beams in semiconductor NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Cui, C.M. Lieber, Science 291, 851 (2001)

    Article  ADS  Google Scholar 

  2. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, P. Yang, Nature 451, 163 (2008)

    Article  ADS  Google Scholar 

  3. B.M. Kayes, H.A. Atwater, N.S. Lewis, J. Appl. Phys. 97, 114302 (2005)

    Article  ADS  Google Scholar 

  4. Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P. Yang, Nature 447, 1098–1101 (2007)

    Article  ADS  Google Scholar 

  5. N. Singh, K.D. Buddharaju, S.K. Manhas, A. Agarwal, S.C. Rustagi, G.Q. Lo, N. Balasubramanian, D.L. Kwong, IEEE Trans. Electron Devices 55, 3107 (2008)

    Article  ADS  Google Scholar 

  6. H. Richter, Z.P. Wang, L. Ley, Solid State Commun. 39, 625 (1981)

    Article  ADS  Google Scholar 

  7. I.H. Campbell, P.M. Fauchet, Solid State Commun. 58, 739 (1986)

    Article  ADS  Google Scholar 

  8. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Appl. Phys. Lett. 83, 2934 (2003)

    Article  ADS  Google Scholar 

  9. Y. Park, J. Kim, H. Kim, I. Kim, K. Lee, D. Seo, H. Choi, W. Kim, Appl. Phys. A 104, 7 (2011)

    Article  ADS  Google Scholar 

  10. C. Guthy, C. Nam, J.E. Fischer, J. Appl. Phys. 103, 064319 (2008)

    Article  ADS  Google Scholar 

  11. C. You, Nano Lett. 12, 2918 (2012)

    Article  Google Scholar 

  12. T. Westover, R. Jones, J.Y. Huang, G. Wang, E. Lai, A.A. Talin, Nano Lett. 9, 257 (2009)

    Article  ADS  Google Scholar 

  13. D.D.D. Ma, S.T. Lee, J. Shinar, Appl. Phys. Lett. 87, 033107 (2005)

    Article  ADS  Google Scholar 

  14. F. Martelli, M. Piccin, G. Bais, F. Jabeen, S. Ambrosini, S. Rubini, A. Franciosi, Nanotechnology 18, 125603 (2007)

    Article  ADS  Google Scholar 

  15. O. Demichel, F. Oehler, V. Calvo, P. Noé, N. Pauc, P. Gentile, P. Ferret, T. Baron, N. Magnea, Physica E 41, 963 (2009)

    Article  ADS  Google Scholar 

  16. X.Q. Xie, W.F. Liu, J.I. Oh, W.Z. Shen, Appl. Phys. Lett. 99, 033107 (2011)

    Article  ADS  Google Scholar 

  17. L. Cao, J.S. White, J.S. Park, J.A. Schuller, B.M. Clemens, M.L. Brongersma, Nat. Mater. 8, 643 (2009)

    Article  ADS  Google Scholar 

  18. G. Brönstrup, N. Jahr, C. Leiterer, A. Csaki, W. Fritzsche, S. Chistiansen, ACS Nano 4, 7113 (2010)

    Article  Google Scholar 

  19. H. Scheel, S. Reich, A.C. Ferrari, M. Cantoro, A. Colli, C. Thomsen, Appl. Phys. Lett. 88, 233114 (2006)

    Article  ADS  Google Scholar 

  20. S. Bhattacharya, S. Samui, Appl. Phys. Lett. 84, 1564 (2004)

    Article  ADS  Google Scholar 

  21. S.R. Gupta, Q. Xiong, C.K. Adu, U.J. Kim, P.C. Eklund, Nano Lett. 3, 627 (2003)

    Article  ADS  Google Scholar 

  22. K.W. Adu, H.R. Gutiérrez, U.J. Kim, P.C. Eklund, Phys. Rev. B 73, 155333 (2006)

    Article  ADS  Google Scholar 

  23. G.W. Zhou, Z. Zhang, D.P. Yu, Appl. Phys. Lett. 73, 677 (1998)

    Article  ADS  Google Scholar 

  24. A. Torres, A. Martín-Martín, O. Martínez, A.C. Prieto, V. Hortelano, J. Jiménez, A. Rodríguez, J. Sangrador, T. Rodríguez, Appl. Phys. Lett. 96, 011904 (2010)

    Article  ADS  Google Scholar 

  25. L. Zhang, W. Ding, Y. Yan, J. Qu, B. Li, L.-Y. Li, K.T. Yue, D.P. Yu, Appl. Phys. Lett. 81, 4446 (2002)

    Article  ADS  Google Scholar 

  26. I. Zardo, G. Abstreiter, A. Fontcuberta, in Nanowires, ed. by P. Prete (INTECH, Rijeka, 2010), p. 227. ISBN978-953-7619-79-4, Chap. 12

    Google Scholar 

  27. Y. Ahn, J. Dunning, J. Park, Nano Lett. 5, 1367 (2005)

    Article  ADS  Google Scholar 

  28. H.Y. Chen, R.S. Chen, N.K. Rajan, F.C. Chang, L.C. Chen, K.H. Chen, Y.J. Yang, M.A. Reed, Phys. Rev. B 84, 205443 (2011)

    Article  ADS  Google Scholar 

  29. R. Jalilian, G.U. Sumanasekera, H. Chandrasekharan, M.K. Sunkara, Phys. Rev. B 74, 155421 (2006)

    Article  ADS  Google Scholar 

  30. G.S. Doerk, C. Carraro, R. Maboudian, Phys. Rev. B 80, 073306 (2009)

    Article  ADS  Google Scholar 

  31. E. Alarcón-Lladó, J. Ibañez, R. Cuscó, L. Artús, J.D. Prades, S. Estradé, J.R. Morante, J. Raman, Spectroscopy 42, 153 (2011)

    Google Scholar 

  32. K. Roodenko, I.A. Goldthorpe, P.C. MacIntyre, Y.J. Chabal, Phys. Rev. B 82, 115210 (2010)

    Article  ADS  Google Scholar 

  33. I.K. Hsu, R. Kumar, A. Bushmaker, S.B. Cronin, M.T. Pettes, Appl. Phys. Lett. 92, 063119 (2008)

    Article  ADS  Google Scholar 

  34. M. Soini, I. Zardo, E. Uccelli, S. Funk, G. Koblmuller, A. Fontcuberta, G. Abstreiter, Appl. Phys. Lett. 97, 263107 (2010)

    Article  ADS  Google Scholar 

  35. G.S. Doerk, C. Carraro, R. Maboudian, ACS Nano 4, 4908 (2010)

    Article  Google Scholar 

  36. Y. Zhang, J. Kristofferson, A. Shakouri, D. Li, A. Majumdar, Y. Wu, R. Fan, P. Yang, IEEE Trans. Nanotechnol. 5, 67 (2006)

    Article  ADS  Google Scholar 

  37. X.F. Liu, R. Wang, Y.P. Jiang, Q. Zhang, X.Y. Shan, X.H. Qiu, J. Appl. Phys. 108, 054310 (2010)

    Article  ADS  Google Scholar 

  38. L. Cao, P. Fan, A.P. Vasudev, J.S. White, Z. Yu, W. Cai, J.A. Schuller, S. Fan, M.L. Brongersma, Nano Lett. 10, 439 (2010)

    Article  ADS  Google Scholar 

  39. L. Cao, J. Park, P. Fan, B. Clemens, M.L. Brongersma, Nano Lett. 10, 1229 (2010)

    Article  ADS  Google Scholar 

  40. J.R. Backhurst, J.H. Harker, J.F. Richardson, J.M. Coulson, Chemical Engineering, 6th edn., vol. 1 (Butterworth–Heinemann, Oxford, 1999). Chap. 9

    Google Scholar 

  41. B.K. Sun, X. Zhang, C.P. Grigoropoulos, Int. J. Heat Mass Transf. 40, 1591–1600 (1997)

    Article  Google Scholar 

  42. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic Press, New York, 1969), Chap. 3 and Chap. 8

    Google Scholar 

  43. H. Kim, L. Kim, H. Choi, W. Kim, Appl. Phys. Lett. 96, 233106 (2010)

    Article  ADS  Google Scholar 

  44. R. Chen, A.I. Hochbaum, P. Murphy, J.E. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)

    Article  ADS  Google Scholar 

  45. M.C. Wingert, Z.C.Y. Chen, E. Dechaumphai, J. Moon, J. Kim, J. Xiang, R. Chen, Nano Lett. 11, 5507 (2011)

    Article  ADS  Google Scholar 

  46. J. Lim, K. Hippalgaonkar, S.C. Andrews, A. Majumdar, P. Yang, Nano Lett. 12, 2475 (2012)

    Article  ADS  Google Scholar 

  47. H. Kim, Y. Park, I. Kim, J. Kim, H. Choi, W. Kim, Appl. Phys. A 104, 23 (2011)

    Article  ADS  Google Scholar 

  48. J. Anaya, T. Rodríguez, J. Jiménez, Nanowires, Recent Advances (INTECH, Rijeka, ISBN980-953-307-525-4, 2012 (to be published))

  49. J.Y. Duquesne, Phys. Rev. B 79, 153304 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Spanish Government (MAT-2007-66181-C03 and MAT-2010-20441-C02) and by Junta de Castilla y León (VA051A06 -GR202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Anaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anaya, J., Torres, A., Martín-Martín, A. et al. Study of the temperature distribution in Si nanowires under microscopic laser beam excitation. Appl. Phys. A 113, 167–176 (2013). https://doi.org/10.1007/s00339-012-7509-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7509-y

Keywords

Navigation