Skip to main content
Log in

Gain compensated symmetric loaded transmission line exhibiting bidirectional negative group delay

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A one-dimensional medium capable of bidirectional lossless negative group delay electromagnetic wave propagation is described. The medium is implemented as a microwave circuit comprising two symmetric resonator-loaded transmission lines, with active gain compensation and coupled through power combiners. We experimentally demonstrate the circuit is conditionally stable and is capable of lossless transmission of a finite bandwidth pulse in both directions. A measured group delay of −600 ps with a gain of 1.12 dB in both directions is achieved for a Gaussian pulse with a bandwidth of 14 MHz modulated at a frequency of 280 MHz (NGD-bandwidth-product of 0.0084). This circuit demonstrates the possibility of constructing a one-dimensional spatial void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Dogariu, A. Kuzmich, L.J. Wang, Transparent anomalous dispersion and superluminal light-pulse propagation at negative group velocity. Phys. Rev. A 63, 053806 (2001)

    Article  ADS  Google Scholar 

  2. O.F. Siddiqui, M. Mojahedi, G.V. Eleftheriades, Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Trans. Antennas Propag. 51, 2619–2625 (2003)

    Article  ADS  Google Scholar 

  3. B. Ravelo, A. Perannec, M. LeRoy, Y.G. Boucher, Active microwave circuit with negative group delay. IEEE Microw. Wirel. Compon. Lett. 17, 861–863 (2007)

    Article  Google Scholar 

  4. S. Gharavi, M. Mojahedi, Theory and application of gain-assisted periodically loaded transmission lines with negative or superluminal group delays, in Proc. IEEE Intl. Conf. Antennas Propag., June 2007, Aloha, Hawaii (2007), pp. 2373–2376

    Google Scholar 

  5. T. Nakanishi, K. Sugiyama, M. Kitano, Demonstration of negative group delays in a simple electronic circuit. Am. J. Phys. 70, 1117–1121 (2002)

    Article  ADS  Google Scholar 

  6. B. Ravelo, A. Perennec, M. Le Roy, Negative group delay active topologies respectively dedicated to microwave frequencies and baseband signals. Proc. Eur. Microw. Assoc. 4, 124–130 (2008)

    Google Scholar 

  7. M. Kandic, G.E. Bridges, Asymptotic limits of negative group delay in active resonator-based distributed devices. IEEE Trans. Circuits Syst. I, Regul. Pap. 58, 1727–1735 (2011)

    Article  MathSciNet  Google Scholar 

  8. B. Ravelo, A. Perennec, M. Le Roy, Y. Boucher, Synthesis of broadband balun negative group delay active circuits, in Proc. IEEE Intl. Conf. Antennas Propag., June 2007, Aloha, Hawaii (2007)

    Google Scholar 

  9. B. Ravelo, A. Perennec, M. Le Roy, Broadband balun using active negative group delay circuit, in Proc. 2007 European Microwave Conference, Oct. 2007, pp. 466–469

    Chapter  Google Scholar 

  10. S. Hrabar, I. Krois, A. Kiricenko, Towards active dispersionless ENZ metamaterial for cloaking applications. Metamaterials 4, 89–97 (2010)

    Article  ADS  Google Scholar 

  11. M. Kandic, G.E. Bridges, Bilateral gain-compensated negative group delay circuit. IEEE Microw. Wirel. Compon. Lett. 21, 308–310 (2011)

    Article  Google Scholar 

  12. H. Noto, K. Yamauchi, M. Nakayama, Y. Isota, Negative group delay circuit for feed-forward amplifier, in Proc., 2007. IEEE/MTT-S Intl. Microwave Symp., June 2007, pp. 1103–1106

    Chapter  Google Scholar 

  13. S. Keser, M. Mojahedi, Broadband negative group delay microstrip phase shifter design, in Proc. IEEE Intl. Conf. Antennas Propag., June 2009, Charleston, South Carolina (2009)

    Google Scholar 

  14. B. Ravelo, M. Le Roy, A. Perennec, Application of negative group delay active circuits to the design of broadband and constant phase shifters. Microw. Opt. Technol. Lett. 50, 3078–3080 (2008)

    Article  Google Scholar 

  15. S.S. Oh, L. Shafai, Compensated circuit with characteristics of lossless double negative materials and its application to array antennas. IET Microw. Antennas Propag. 1, 29–38 (2007)

    Article  Google Scholar 

  16. O.F. Siddiqui, S.J. Erickson, G.V. Eleftheriades, M. Mojahedi, Time-domain measurement of negative group delay in negative-refractive-index transmission-line metamaterials. IEEE Trans. Microw. Theory Tech. 52, 1449–1454 (2004)

    Article  ADS  Google Scholar 

  17. S.J. Erickson, M. Khaja, M. Mojahedi, Time-and frequency-domain measurements for an active negative group delay circuit, in Proc. IEEE Intl. Conf. Antennas Propag., July 2005, pp. 790–793

    Google Scholar 

  18. D.M. Pozar, Microwave Engineering, 2nd edn. (Wiley, New York, 1998), pp. 612–618, Chap. 11

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada. Use of the facilities of the Advanced RF Systems Lab of the National Microelectronics and Photonics Testing Collaboratory are appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Greg E. Bridges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bridges, G.E., Kandic, M. Gain compensated symmetric loaded transmission line exhibiting bidirectional negative group delay. Appl. Phys. A 109, 1087–1093 (2012). https://doi.org/10.1007/s00339-012-7423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7423-3

Keywords

Navigation