Skip to main content
Log in

Enhanced surface photovoltage response of ZnO nanorod based inorganic/organic hybrid junctions by constructing embedded bulk composite structures

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Two kinds of inorganic/organic hybrid junctions based on ZnO nanorods (NRs), i.e. two-layer planar heterojunction and embedded bulk composite structures, were fabricated on ITO glass substrates. Surface photovoltage (SPV) methods based on a Kelvin probe and a lock-in amplifier were respectively utilized to study the photogenerated charges at the surface and the interface in the ZnO-based hybrid junctions. Results indicate that the lock-in SPV response of the bulk composite structure is much higher than its planar counterpart in terms of intensity and spectral range. Therefore, ZnO NR/PF (poly(9,9-di-n-octylfluorenyl-2,7-diyl)) embedded bulk composite structures are more suitable and preferred for photovoltaic application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. C. Jagadish, S. Pearton, Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier, Amsterdam, 2006)

    Google Scholar 

  2. B. Weintraub, Z.Z. Zhou, Y.H. Li, Y.L. Deng, Nanoscale 2, 1573 (2010)

    Article  ADS  Google Scholar 

  3. J.C. Sun, J.M. Bian, Y. Wang, Y.X. Wang, Y. Gong, Y. Li, K.C. Liu, S.L. Zhang, Y.D. Liu, H.W. Liang, G.T. Du, N.S. Yu, Electrochem. Solid-State Lett. 15, H164 (2012)

    Article  Google Scholar 

  4. T. Yamamoto, H. Katayama-Yoshida, Physica B 302, 155 (2001)

    Article  ADS  Google Scholar 

  5. P. Uthirakumar, B.D. Ryu, J.H. Kang, H.G. Kim, J.H. Ryu, C.H. Hong, Electrochem. Solid-State Lett. 13, H363 (2010)

    Article  Google Scholar 

  6. T. Chen, S.Y. Liu, Q. Xie, C. Detavernier, R.L. Van Meirhaeghe, X.P. Qu, Appl. Phys. A, Mater. Sci. Process. 98, 357 (2010)

    Article  ADS  Google Scholar 

  7. S. Zaman, A. Zainelabdin, G. Amin, O. Nur, M. Willander, Appl. Phys. A, Mater. Sci. Process. 104, 1203 (2011)

    Article  ADS  Google Scholar 

  8. S.K. Hau, H.L. Yip, A.K.-Y. Jen, Polym. Rev. 50, 474 (2010)

    Article  Google Scholar 

  9. N.C. Das, S. Biswas, P.E. Sokol, J. Renew. Sustain. Energy 3, 033105 (2011)

    Article  Google Scholar 

  10. C.Y. Lee, J.Y. Wang, Y. Chou, C.L. Cheng, C.H. Chao, S.C. Shiu, S.C. Hung, J.J. Chao, M.Y. Liu, W.F. Su, Y.F. Chen, C.F. Lin, Nanotechnology 20, 425202 (2009)

    Article  ADS  Google Scholar 

  11. L. Kronik, Y. Shapira, Surf. Interface Anal. 31, 954 (2001)

    Article  Google Scholar 

  12. M.A. Reshchikov, M. Foussekis, A.A. Baski, J. Appl. Phys. 107, 113535 (2010)

    Article  ADS  Google Scholar 

  13. Y.T. Liu, A.M. Liu, W.F. Liu, Y.C. Sang, Z.Q. Hu, D.W. Kang, Appl. Surf. Sci. 6, 2176 (2011)

    Article  ADS  Google Scholar 

  14. Q.W. Li, J.M. Bian, J.C. Sun, J.W. Wang, Y.M. Luo, K.T. Sun, D.Q. Yu, Appl. Surf. Sci. 256, 1698 (2010)

    Article  ADS  Google Scholar 

  15. W. Wu, J.M. Bian, J.C. Sun, C.H. Cheng, Y.X. Wang, Y.M. Luo, J. Alloys Compd. (2012). doi:10.1016/j.jallcom.2012.04.067

    Google Scholar 

  16. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999)

    Article  ADS  Google Scholar 

  17. Q.D. Zhao, M. Yu, T.F. Xie, L.L. Peng, P. Wang, D.J. Wang, Nanotechnology 19, 245706 (2008)

    Article  ADS  Google Scholar 

  18. Q.D. Zhao, D.J. Wang, L.L. Peng, Y.H. Lin, M. Yang, T.F. Xie, Chem. Phys. Lett. 434, 96 (2007)

    Article  ADS  Google Scholar 

  19. H.G. Li, G. Wu, M.M. Shi, L.G. Yang, H.Z. Chen, M. Wang, Appl. Phys. Lett. 93, 153309 (2008)

    Article  ADS  Google Scholar 

  20. Y.G. Han, G. Wu, H.G. Li, M. Wang, H.Z. Chen, Nanotechnology 21, 185708 (2010)

    Article  ADS  Google Scholar 

  21. P.L. Ong, I.A. Levitsky, Energies 3, 313 (2010)

    Article  Google Scholar 

  22. X. Gong, P.K. Iyer, D. Moses, G.C. Bazan, A.J. Heeger, S.S. Xiao, Adv. Funct. Mater. 13, 325 (2003)

    Article  Google Scholar 

  23. Q.J. Zhao, W.H. Wu, Polymer 50, 998 (2009)

    Article  MathSciNet  Google Scholar 

  24. D.K. Schroder, Meas. Sci. Technol. 12, R16 (2001)

    Article  ADS  Google Scholar 

  25. Q.D. Zhao, T.F. Xie, L.L. Peng, Y.H. Lin, P. Wang, L. Peng, D.J. Wang, J. Phys. Chem. C 111, 17136 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China (863 Program, No. 2011AA050516), the Science Fund of Dalian (No. 2011J21DW013) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, D., Liu, A., Bian, J. et al. Enhanced surface photovoltage response of ZnO nanorod based inorganic/organic hybrid junctions by constructing embedded bulk composite structures. Appl. Phys. A 110, 263–267 (2013). https://doi.org/10.1007/s00339-012-7314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7314-7

Keywords

Navigation