Skip to main content

Advertisement

Log in

Nanoscale laser-induced forward transfer through patterned Cr films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The resolution enhancement of laser-induced forward transfer (LIFT) is investigated through the pre-patterning of Cr on the donor substrate. 85 nm dots are first patterned on a microscope slide, and an 800 nm wavelength and 130 fs pulse laser with a beam waist of ∼9 μm is used to transfer the Cr dots to an acceptor substrate. The threshold fluence is found to be ∼0.15 the threshold fluence of a similar continuous film, which is thought to be due to the fact that no force is needed to tear away Cr from the film itself, unlike in a continuous film experiment. Since the volume of the material limits the transfer feature sizes instead of the laser parameters, as in a continuous film system, minimum transferable feature diameters are significantly lower compared to the continuous film case. Also, the transferred feature diameters are not dependent on the laser parameters, so the diameters are consistent across a wide range of fluences. The force per unit area generated by the laser at threshold fluence is estimated to be ∼3 GPa, which is consistent with previous results in the literature. The simplified model that our pre-patterned Cr LIFT experiment represents would make it an ideal case for benchmarking molecular dynamics simulations of femtosecond laser ablation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Bohandy, B.F. Kim, F.J. Adrian, J. Appl. Phys. 60, 1538 (1986)

    Article  ADS  Google Scholar 

  2. D.P. Banks, C. Grivas, I. Zergiotti, R.W. Eason, Opt. Express 16, 3249 (2008)

    Article  ADS  Google Scholar 

  3. C.L. Jones, K.S. Kaur, P. Ganguly, D.P. Banks, Y.J. Ying et al., Appl. Phys. A 101, 333 (2010)

    Article  ADS  Google Scholar 

  4. I. Zergiotti, S. Mailis, N.A. Vainos, P. Papakonstantinou, C. Kaqlpouzos, C.P. Grigoropoulos, C. Fotakis, Appl. Phys. A 66, 579 (1998)

    Article  ADS  Google Scholar 

  5. C. Germain, L. Charron, L. Lilge, Y.Y. Tsui, Appl. Surf. Sci. 253, 8328 (2007)

    Article  ADS  Google Scholar 

  6. L. Rapp, A.K. Diallo, A.P. Alloncle, C. Videlot-Ackermann, F. Fages, P. Delaportel, Appl. Phys. Lett. 95, 171109 (2009)

    Article  ADS  Google Scholar 

  7. V.P. Veiko, Proc. SPIE 4157, 93 (2000)

    Article  ADS  Google Scholar 

  8. D.P. Banks, C. Grivas, J.D. Mills, R.W. Eason, I. Zergiotti, Appl. Phys. Lett. 89, 192107 (2006)

    Article  Google Scholar 

  9. D.P. Banks, Ph.D. Dissertation, University of Southampton (2008)

  10. V. Sametoglu, V. Sauer, Y.Y. Tsui (in preparation)

  11. Y.Y. Tsui, J. Santiago, Y.M. Li, R. Fedosejevs, Opt. Commun. 111, 360 (1994)

    Article  ADS  Google Scholar 

  12. S.D. Brorson, A. Kazeroonian, S. Moodera, D.W. Face, T.K. Cheng et al., Phys. Rev. Lett. 64, 2172 (1990)

    Article  ADS  Google Scholar 

  13. N.A. Dubrovinskaia, L.S. Dubrovinsky, S.K. Saxena, Calphad 21, 497 (1997)

    Article  Google Scholar 

  14. S.K. Lee, K.K. Yoon, K.H. Whang, S.J. Na, Surf. Coat. Technol. 113, 63 (1999)

    Article  Google Scholar 

  15. P. Benjamin, C. Weaver, Proc. R. Soc. A, Math. Phys. Eng. Sci. 254, 163 (1960)

    Article  ADS  Google Scholar 

  16. P. Benjamin, C. Weaver, Proc. R. Soc. A, Math. Phys. Eng. Sci. 254, 177 (1960)

    Article  ADS  Google Scholar 

  17. P. Benjamin, C. Weaver, Proc. R. Soc. A, Math. Phys. Eng. Sci. 261, 516 (1961)

    Article  ADS  Google Scholar 

  18. K.L. Mittal, Electrocomp. Sci. Technol. 3, 21 (1976)

    Article  Google Scholar 

  19. J.W. Beams, Tech. Proc. Am. Electroplaters Soc. 43, 211–214 (1956)

    Google Scholar 

  20. J.W. Beams, Science 120, 619–625 (1954)

    Article  ADS  Google Scholar 

  21. D.G. Papazoglou, A. Karaiskou, I. Zergioti, C. Fotakis, Appl. Phys. Lett. 81, 1594 (2002)

    Article  ADS  Google Scholar 

  22. O. Samek, V. Hommes, R. Hergenroder, S.V. Kukhlevsky, Rev. Sci. Instrum. 76, 086104 (2005)

    Article  ADS  Google Scholar 

  23. M. Stafe, C. Negutu, N.N. Puscas, I.M. Popescu, Rom. Rep. Phys. 64, 758–770 (2010)

    Google Scholar 

  24. B. Bhushan, Springer Handbook of Nanotechnology, Vol. 2, Chap. 7: International Technology Roadmap for Semiconductors, Lithography, 2nd edn. (Springer, Berlin, 2009)

    Google Scholar 

  25. G. Kreindl, T. Glinsner, R. Miller, Nat. Photonics 4, 27–28 (2010)

    Article  ADS  Google Scholar 

  26. D.S. Ivanov, L.V. Zhigilei, Phys. Rev. Lett. 98, 195701 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research work was supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canadian Institute for Photonic Innovation (CIPI), and Alberta Innovates: Technology Futures. Facilities used in the creation and characterization of the samples include the NanoFab (with Scott Munro) and ACSES (with Shihong Xu) at the University of Alberta and the NINT Cleanroom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Tsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sametoglu, V., Sauer, V. & Tsui, Y.Y. Nanoscale laser-induced forward transfer through patterned Cr films. Appl. Phys. A 110, 823–827 (2013). https://doi.org/10.1007/s00339-012-7159-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7159-0

Keywords

Navigation