Skip to main content
Log in

Molecular dynamics studies of ultrafast laser-induced nonthermal melting

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Molecular Dynamics (MD) is employed to investigate nonthermal melting triggered by coherent phonon excitation in bismuth telluride, which has Peierls distortion in the lattice structure. Results showed that the structural distortion caused by coherent phonons appears as early as 80 fs, while it takes several picoseconds for the whole phonon-excited area to evolve into a liquid state. It was also found that the temperature in the phonon-excited area rises quickly within tens of femtoseconds, while the rest of the lattice remains at the initial temperature even after several picoseconds, which is separated from the high temperature region across a thin transition area. This phenomenon is analogous to the heat transfer across a solid–liquid interface, even though in our case there is no abrupt solid-liquid interface between the cold lattice and the quasiliquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Rousse, C. Rischel, S. Fourmaux, I. Uschmann, S. Sebban, G. Grillon, Ph. Balcou, E. Förster, J.P. Geindre, P. Audebert, J.C. Gauthier, D. Hulin, Nature 410, 65 (2001)

    Article  ADS  Google Scholar 

  2. C.W. Siders, A. Cavalleri, K. Sokolowski-Tinten, Cs. Toth, T. Guo, M. Kammler, M. Horn von Hoegen, K.R. Wilson, D. von der Linde, C.P.J. Barty, Science 286, 1340 (1999)

    Article  Google Scholar 

  3. C.V. Shank, R. Yen, C. Hirlimann, Phys. Rev. Lett. 51, 900 (1983)

    Article  ADS  Google Scholar 

  4. C. Guo, G. Rodriguez, A. Lobad, A.J. Taylor, Phys. Rev. Lett. 84, 4493 (2000)

    Article  ADS  Google Scholar 

  5. G. Sciaini, M. Harb, S.G. Kruglik, T. Payer, C.T. Hebeisen, F.J.M. Heringdorf, M. Yamaguchi, M.H. Hoegen, R. Ernstorfer, R.J.D. Miller, Nature 458, 56 (2009)

    Article  ADS  Google Scholar 

  6. S.K. Sundaram, E. Mazur, Nat. Mater. 767, 217 (2002)

    Article  ADS  Google Scholar 

  7. P.B. Hillyard, K.J. Gaffney, A.M. Lindenberg, S. Engemann, R.A. Akre, J. Arthur, C. Blome, P.H. Bucksbaum, A.L. Cavalieri, A. Deb, R.W. Falcone, D.M. Fritz, P.H. Fuoss, J. Hajdu, P. Krejcik, J. Larsson, S.H. Lee, D.A. Meyer, A.J. Nelson, R. Pahl, D.A. Reis, J. Rudati, D.P. Siddons, K. Sokolowski-Tinten, D. von der Linde, J.B. Hastings, Phys. Rev. Lett. 98, 125501 (2007)

    Article  ADS  Google Scholar 

  8. A.M. Lindenberg, J. Larsson, K. Sokolowski-Tinten, K.J. Gaffney, C. Blome, O. Synnergren, J. Sheppard, C. Caleman, A.G. MacPhee, D. Weinstein, D.P. Lowney, T.K. Allison, T. Matthews, R.W. Falcone, A.L. Cavalieri, D.M. Fritz, S.H. Lee, P.H. Bucksbaum, D.A. Reis, J. Rudati, P.H. Fuoss, C.C. Kao, D.P. Siddons, R. Pahl, J. Als-Nielsen, S. Duesterer, R. Ischebeck, H. Schlarb, H. Schulte-Schrepping, T. Tschentscher, J. Schneider, D. von der Linde, O. Hignette, F. Sette, H.N. Chapman, R.W. Lee, T.N. Hansen, S. Techert, J.S. Wark, M. Bergh, G. Huldt, D. van der Spoel, N. Timneanu, J. Hajdu, R.A. Akre, E. Bong, P. Krejcik, J. Arthur, S. Brennan, K. Luening, J.B. Hastings, Science 308, 392 (2005)

    Article  ADS  Google Scholar 

  9. D.M. Fritz, D.A. Reis, B. Adams, R.A. Akre, J. Arthur, C. Blome, P.H. Bucksbaum, A.L. Cavalieri, S. Engemann, S. Fahy, R.W. Falcone, P.H. Fuoss, K.J. Gaffney, M.J. George, J. Hajdu, M.P. Hertlein, P.B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S.H. Lee, A.M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, E.D. Murray, A.J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D.P. Siddons, K. Sokolowski-Tinten, Th. Tschentscher, D. von der Linde, J.B. Hastings, Science 315, 633 (2007)

    Article  ADS  Google Scholar 

  10. K. Sokolowski-Tinten, C. Blome, J. Blums, A. Cavalleri, C. Dietrich, A. Tarasevitch, I. Uschmann, E. Forster, M. Kammler, M. Horn-von-Hoegen, D. von der Linde, Nature 422, 287 (2003)

    Article  ADS  Google Scholar 

  11. E.S. Zijlstra, J. Walkenhorst, M.E. Garcia, Phys. Rev. Lett. 101, 135701 (2008)

    Article  ADS  Google Scholar 

  12. T.K. Cheng, S.D. Brorson, A.S. Kazeroonian, J.S. Moodera, G. Dresselhaus, M.S. Dresselhaus, E.P. Ippen, Appl. Phys. Lett. 57, 1004 (1990)

    Article  ADS  Google Scholar 

  13. Y. Wang, X. Xu, R. Venkatasubramanian, Appl. Phys. Lett. 93, 113114 (2008)

    Article  ADS  Google Scholar 

  14. C.M. Liebig, Y. Wang, X. Xu, Opt. Express 18, 20498 (2010)

    Article  Google Scholar 

  15. B. Qiu, X. Ruan, Phys. Rev. B 80, 165203 (2009)

    Article  ADS  Google Scholar 

  16. W. Richter, H. Kohler, C.R. Becker, Phys. Status Solidi B 84, 619 (1977)

    Article  ADS  Google Scholar 

  17. B.L. Huang, M. Kaviany, Phys. Rev. B 77, 125209 (2008)

    Article  ADS  Google Scholar 

  18. D. Wolf, P. Keblinski, S.R. Phillpot, J. Eggebrecht, J. Chem. Phys. 110, 8254 (1999)

    Article  ADS  Google Scholar 

  19. A.F. Gibson, R.E. Burgess (eds.), Progress in Semiconductors (Wiley, New York, 1963)

    MATH  Google Scholar 

  20. X. Xu, C.P. Grigoropoulos, R.E. Russo, J. Heat Transf. 117, 708 (1995)

    Article  Google Scholar 

  21. X. Xu, G. Chen, K.H. Song, Int. J. Heat Mass Transf. 42, 1371 (1999)

    Article  Google Scholar 

  22. W.L. Chan, R.S. Averback, D.G. Cahill, A. Lagoutchev, Phys. Rev. B 78, 214107 (2008)

    Article  ADS  Google Scholar 

  23. P.L. Silvestrelli, A. Aavi, M. Parrinello, D. Frenkel, Phys. Rev. Lett. 77, 3149 (1996)

    Article  ADS  Google Scholar 

  24. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon/Oxford University Press, Oxford/New York, 1987)

    MATH  Google Scholar 

Download references

Acknowledgements

Support to this work by the Air Force Office of Scientific Research (AFOSR) (FA9550-08-1-0091) and the National Science Foundation (0933559) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Xu, X. Molecular dynamics studies of ultrafast laser-induced nonthermal melting. Appl. Phys. A 110, 617–621 (2013). https://doi.org/10.1007/s00339-012-7139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7139-4

Keywords

Navigation