Skip to main content
Log in

Microhole machining of silicon wafer in air and under deionized water by pulsed UV laser system

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study investigated the laser microhole drilling performance of polycrystalline silicon using the trepanning drilling method combined with the helix swing path with varying parameters, including laser pulse energy, pulse repetition frequency, and galvanometric scan speed. A pulsed ultraviolet laser system was used in an atmospheric condition and under deionized water. Moreover, the trepanning method was used to obtain a larger via diameter. The surface morphology, taper angle, and melted residual high were evaluated using a three-dimensional confocal laser scanning microscope and field emission scanning electron microscope. This method can produce larger holes and can be applied to crystalline silicon, multicrystalline silicon, thin-film silicon, and other materials for photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Green, Energy Policy 28, 989 (2000)

    Article  Google Scholar 

  2. M. Sen, H.S. Shan, Int. J. Mach. Tools Manuf. 45, 137 (2005)

    Article  Google Scholar 

  3. Y. Long, L. Xiong, T. Shi, Appl. Surf. Sci. 257, 3677 (2011)

    Article  Google Scholar 

  4. C.T. Pan, Y.M. Hwang, C.W. Hsieh, Sens. Actuators A, Phys. 122, 45 (2005)

    Article  Google Scholar 

  5. S. Dhar, N. Saini, R. Purohit, Proc. Adv. Mech. Eng. (AME) (2006)

  6. P. Laakso, R. Penttilä, P. Heimala, J. Laser Micro Nanoeng. 5, 273 (2010)

    Article  Google Scholar 

  7. B. Tan, J. Micromech. Microeng. 16, 1 (2006)

    Article  Google Scholar 

  8. F. Brandi, N. Burdet, R. Carzino, A. Diaspro, Opt. Express 18, 23488 (2010)

    Article  ADS  Google Scholar 

  9. T. Baier, M. Schulz-Ruthenberg, M. Ametowobla, T. Schlenker, D. Manz, Prog. Photovolt. 18, 603 (2010)

    Article  Google Scholar 

  10. K.P. Stolberg, B. Kremser, S. Friedel, Y. Atsuta, J. Laser Micro Nanoeng. 4, 231 (2009)

    Article  Google Scholar 

  11. L.M. Wee, E.Y.K. Ng, A.H. Prathama, H. Zheng, Opt. Laser Technol. 43, 62 (2011)

    Article  ADS  Google Scholar 

  12. T. Otani, L. Herbst, M. Heglin, S.V. Govorkov, A.O. Wiessner, Appl. Phys. A, Mater. Sci. Process. 79, 1335 (2004)

    ADS  Google Scholar 

  13. L. Liu, C.Y. Chang, W. Wu, S.J. Pearton, F. Ren, Appl. Surf. Sci. 257, 2303 (2011)

    Article  ADS  Google Scholar 

  14. W.M. Steen, Laser Material Processing (Springer, London, 1994), pp. 40–55

    Google Scholar 

  15. C. Dunsky, Proc. IEEE 90, 1670 (2002)

    Article  Google Scholar 

  16. S.F. Tseng, W.T. Hsiao, K.C. Huang, C.Y. Huang, C.P. Chou, Int. J. Autom. Technol. 5, 270 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Council of Taiwan for financially supporting this research under contract nos. NSC 100-2622-E-492-002-CC3 and NSC 99-2221-E-492-014, and measuring supports from Ms. Nien-Nan Chu of Nano/MEMS shop and Precision Machining Shop support the measurement instrument of Instrument Technology Research Center, Taiwan, are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Tse Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, WT., Tseng, SF., Huang, KC. et al. Microhole machining of silicon wafer in air and under deionized water by pulsed UV laser system. Appl. Phys. A 110, 565–570 (2013). https://doi.org/10.1007/s00339-012-7128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7128-7

Keywords

Navigation