Skip to main content
Log in

Direct laser printing of thin-film polyaniline devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 06 October 2012

Abstract

We report the fabrication of electrically functional polyaniline thin-film microdevices. Polyaniline films were printed in the solid phase by Laser-Induced Forward Transfer directly between Au electrodes on a Si/SiO2 substrate. To apply solid-phase deposition, aniline was in situ polymerized on quartz substrates. Laser deposition preserves the morphology of the films and delivers sharp features with controllable dimensions. The electrical characteristics of printed polyaniline present ohmic behavior, allowing for electroactive applications. Results on gas sensing of ammonia are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. U. Lange, N.V. Roznyatovskaya, V.M. Mirsky, Anal. Chim. Acta 614, 1 (2008)

    Article  Google Scholar 

  2. C. Dhand, M. Das, M. Datta, B.D. Malhotra, Biosens. Bioelectron. 26, 2811 (2011)

    Article  Google Scholar 

  3. S.-C. Zang, L. Zhang, W.-K. Wang, W.-J. Xue, Synth. Met. 160, 2041 (2010)

    Article  Google Scholar 

  4. S. Palaniappan, S.B. Sydulu, T.L. Prasanna, P. Srinivas, J. Appl. Polym. Sci. 120, 780 (2011)

    Article  Google Scholar 

  5. W. Wang, Z. Li, X. Xu, B. Dong, H. Zhang, Z. Wang, C. Wang, R.H. Baughman, S. Fang, Small 7, 597 (2011)

    Article  Google Scholar 

  6. G.S. Goncalves, A.F. Baldissera, L.F. Rodrigues Jr., E.M.A. Martini, C.A. Ferreira, Synth. Met. 161, 313 (2011)

    Article  Google Scholar 

  7. A. Airoudj, D. Debarnot, B. Beche, F. Poncin-Epaillard, Talanta 77, 1590 (2009)

    Article  Google Scholar 

  8. Z.F. Li, E. Ruckenstein, J. Colloid Interface Sci. 264, 362 (2003)

    Article  Google Scholar 

  9. B. Chen, T. Cui, Y. Liu, K. Varahramyan, Solid-State Electron. 47, 841 (2003)

    Article  ADS  Google Scholar 

  10. W.J. Bae, K.H. Kim, Y.H. Park, W.H. Jo, Chem. Commun. 2003, 2768 (2003)

    Article  Google Scholar 

  11. J. Huang, R.B. Kaner, Chem. Commun. 2006, 367 (2006)

    Article  Google Scholar 

  12. O. Ngamna, A. Morrin, A.J. Killard, S.E. Moulton, M.R. Smyth, G.G. Wallace, Langmuir 23, 8569 (2007)

    Article  Google Scholar 

  13. Y.H. Park, C.R. Park, Synth. Met. 118, 187 (2001)

    Article  Google Scholar 

  14. J. Bohandy, B.F. Kim, F.J. Adrian, J. Appl. Phys. 60, 1538 (1986)

    Article  ADS  Google Scholar 

  15. C. Boutopoulos, C. Pandis, K. Giannakopoulos, P. Pissis, I. Zergioti, Appl. Phys. Lett. 96, 041104 (2010)

    Article  ADS  Google Scholar 

  16. J. Stejskal, R.G. Gilbert, Pure Appl. Chem. 74, 857 (2002)

    Article  Google Scholar 

  17. I. Sapurina, J. Stejskal, Polym. Int. 57, 1295 (2008)

    Article  Google Scholar 

  18. S.K. Dhawan, D. Kumar, M.K. Ram, S. Chandra, D.C. Trivedi, Sens. Actuators B, Chem. 40, 99 (1997)

    Article  Google Scholar 

  19. D. Nicolas-Debarnot, F. Poncin-Epaillard, Anal. Chim. Acta 475, 1 (2003)

    Article  Google Scholar 

  20. J. Stejskal, I. Sapurina, J. Prokes, J. Zemek, Synth. Met. 105, 195 (1999)

    Article  Google Scholar 

  21. C. Boutopoulos, P. Andreakou, D. Kafetzopoulos, S. Chatzandroulis, I. Zergioti, Phys. Status Solidi A 205, 2505 (2008)

    Article  ADS  Google Scholar 

  22. M. Kandyla, S. Chatzandroulis, I. Zergioti, Opto-Electron. Rev. 18, 345 (2010)

    Article  ADS  Google Scholar 

  23. P. Dallas, D. Stamopoulos, N. Boukos, V. Tzitzios, D. Niarchos, D. Petridis, Polymer 48, 3162 (2007)

    Article  Google Scholar 

  24. M. Nagel, R. Hany, T. Lippert, M. Molberg, F.A. Nuesch, D. Rentsch, Macromol. Chem. Phys. 208, 277 (2007)

    Article  Google Scholar 

  25. N.T. Kattamis, P.E. Purnick, R. Weiss, C.B. Arnold, Appl. Phys. Lett. 91, 171120 (2007)

    Article  ADS  Google Scholar 

  26. D.P. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, R.W. Eason, Europhys. Lett. 83, 38003 (2008)

    Article  ADS  Google Scholar 

  27. I.Y. Sapurina, M.E. Kompan, V.V. Malyshkin, V.V. Rosanov, J. Stejskal, Russ. J. Electrochem. 45, 697 (2009)

    Article  Google Scholar 

  28. G.B. Blanchet, C.R. Fincher, F. Gao, Appl. Phys. Lett. 82, 1290 (2003)

    Article  ADS  Google Scholar 

  29. C.Y. Yang, M. Reghu, A.J. Heeger, Y. Cao, Synth. Met. 79, 27 (1996)

    Article  Google Scholar 

  30. R. Ansari, W.E. Price, G.G. Wallace, Polymer 37, 917 (1996)

    Article  Google Scholar 

  31. H. Bai, G. Shi, Sensors 7, 267 (2007)

    Article  Google Scholar 

  32. A.L. Kukla, Y.M. Shirshov, S.A. Piletsky, Sens. Actuators B, Chem. 37, 135 (1996)

    Article  Google Scholar 

  33. B. Timmer, W. Olthuis, A. van den Berg, Sens. Actuators B, Chem. 107, 666 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

The research leading to these results was supported by the European Commission under a Marie Curie International Reintegration Grant, Seventh Framework Program, grant agreement 224790.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Zergioti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandyla, M., Pandis, C., Chatzandroulis, S. et al. Direct laser printing of thin-film polyaniline devices. Appl. Phys. A 110, 623–628 (2013). https://doi.org/10.1007/s00339-012-7127-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7127-8

Keywords

Navigation