Skip to main content

Advertisement

Log in

Mechanical property measurements of nanofilm by microbump method induced by laser pulse

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A laser pulse-induced microbump method that aims to measure the mechanical properties of nanofilms is proposed. The sample structure is designed as ‘substrate/AgO x (active layer)/ZnS–SiO2 (nanofilm)’ and the laser pulse is applied to heat the active layer and to create a microbump. The deflections of the microbumps are measured precisely by atomic force microscopy by taking AgO x and ZnS–SiO2 as the active layer and nanofilm, respectively, and by controlling the pulse laser parameters. By transforming the laser power–deflection curve to a pressure–deflection curve, the calculation equations of mechanical properties were strictly derived according to the action principle of a Gaussian intensity profile pulse laser with material and traditional bulge testing equations. The mechanical properties of a ZnS–SiO2 film with only 10-nm thickness were calculated according to the derived equations. The results of the ZnS–SiO2 film are as follows: residual stress is 0.129 MPa, Young’s modulus is 0.441 MPa, and Poisson’s ratio is 0.217.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.P. Orthner, L.W. Rieth, F. Solzbacher, Rev. Sci. Instrum. 81, 055111 (2010)

    Article  ADS  Google Scholar 

  2. H. Guckel, D. Burns, C. Rutigliano, E. Lovell, B. Choi, J. Micromech. Microeng. 2, 86 (1992)

    Article  ADS  Google Scholar 

  3. H.D. Espinosa, B.C. Prorok, M. Fischer, J. Mech. Phys. Solids 51, 47 (2003)

    Article  ADS  Google Scholar 

  4. A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, F.H. Groen, Rev. Sci. Instrum. 70, 4026 (1999)

    Article  ADS  Google Scholar 

  5. A.J. Kalkman, A.H. Verbruggen, G.C.A.M. Janssen, Rev. Sci. Instrum. 74, 1383 (2003)

    Article  ADS  Google Scholar 

  6. A. Karimi, O.R. Shojaei, T. Kruml, J.L. Martin, Thin Solid Films 308–309, 334 (1997)

    Article  Google Scholar 

  7. D. Jossel, F. Spaepen, Acta Metall. Mater. 41, 3017 (1993)

    Article  Google Scholar 

  8. J.A. Ruud, D. Josell, F. Spaepen, A.L. Green, J. Mater. Res. 8, 112 (1993)

    Article  ADS  Google Scholar 

  9. H.M. Wang, P.J. Shi, Z.H. Cai, B.S. Xu, Proc. SPIE 7130, 71300M (2008)

    Article  ADS  Google Scholar 

  10. M. Vila, D. Cáceres, C. Prieto, J. Appl. Phys. 94, 7868 (2003)

    Article  ADS  Google Scholar 

  11. P.A. Flinn, Mater. Res. Soc. Symp. Proc. 130, 41 (1988)

    Article  Google Scholar 

  12. D. Huston, W. Sauter, P.S. Bunt, B. Esser, Proc. SPIE 4344, 673 (2001)

    Article  ADS  Google Scholar 

  13. J. Tominaga, S. Haratani, K. Uchiyama, S. Takayama, Jpn. J. Appl. Phys. 31, 2757 (1992)

    Article  ADS  Google Scholar 

  14. Y.C. Her, Y.C. Lan, W.C. Hsu, S.Y. Tsai, Jpn. J. Appl. Phys. 43, 267 (2004)

    Article  ADS  Google Scholar 

  15. D. Büchel, C. Mihalcea, N. Atoda, J. Tominaga, Proc. SPIE 4469, 85 (2001)

    Article  ADS  Google Scholar 

  16. T. Kikukawa, T. Shima, J. Tominaga, Appl. Phys. Lett. 83, 1701 (2003)

    Article  ADS  Google Scholar 

  17. Q. Liu, J. Tominag, T. Fukaya, Proc. SPIE 5275, 85 (2004)

    Article  ADS  Google Scholar 

  18. T.R. Shiu, C.P. Grigoropoulos, D.G. Cahill, R. Greif, J. Appl. Phys. 86, 1311 (1999)

    Article  ADS  Google Scholar 

  19. J.J. Vlassak, W.D. Nix, J. Mater. Res. 7, 3242 (1992)

    Article  ADS  Google Scholar 

  20. A. Dun, J. Wei, F. Gan, Appl. Surf. Sci. 257, 10674 (2011)

    Article  ADS  Google Scholar 

  21. J. Wei, J. Liu, X. Jiao, Appl. Phys. Lett. 95, 241105 (2009)

    Article  ADS  Google Scholar 

  22. A. Dun, J. Wei, F. Gan, Thin Solid Films 519, 3859 (2011)

    Article  ADS  Google Scholar 

  23. J.J. Vlassak, New experimental techniques and analysis methods for the study of the mechanical properties of materials in small volumes. Ph.D. thesis, Stanford University, USA (1994), p. 95

  24. U.K. Barik, S. Srinivasan, C.L. Nagendra, A. Subrahmanyam, Thin Solid Films 429, 129 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Science Foundation of China (Grant Nos. 50772120, 60977004, and 11054001), the Shanghai Rising Star Tracking Program (10QH1402700), and the Basic Research Program of China (Grant No. 2007CB935400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aihuan Dun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dun, A., Wei, J. Mechanical property measurements of nanofilm by microbump method induced by laser pulse. Appl. Phys. A 121, 1425–1432 (2015). https://doi.org/10.1007/s00339-012-7092-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-7092-2

Keywords

Navigation