Skip to main content
Log in

Structural and dielectric properties of La- and Ti-modified K0.5Na0.5NbO3 ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Studies of structural and dielectric properties of lead-free perovskite K0.5Na0.5NbO3 (KNN) ceramics obtained by the substitution of 5 at% of La and Ti for ions in the A-site and B-site, respectively, and sintered at different temperatures between 1100°C and 1190°C, are presented. X-ray diffraction patterns show the successful formation of an orthorhombic perovskite phase similar to that of pure KNN. The effect of doping and sintering temperature on the dielectric properties of the resulting ceramics is discussed. Simultaneous substitution of La and Ti into the KNN (KNNLaTi) causes a shift in the ferroelectric–paraelectric phase transition temperature from that of pure KNN (420°C) to considerably lower ones (81 to 110°C) for the modified compounds. A particularly important result is the appearance of a single peak in the permittivity vs. temperature curve associated with the ferroelectric–paraelectric phase transition, where the KNNLaTi compound changes from orthorhombic to cubic structure, instead of the two reported for pure KNN. This transition exhibits the characteristics of a normal diffuse phase transition with an incipient relaxer behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971)

    Google Scholar 

  2. Y. Xu, Ferroelectric Materials and Their Applications (North-Holland, Amsterdam, 1991)

    Google Scholar 

  3. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon, Oxford, 1977)

    Google Scholar 

  4. J.F. Fernandez, C. Moure, M. Villegas, P. Duran, M. Kosec, G. Drazic, J. Eur. Ceram. Soc. 18, 1695 (1998)

    Article  Google Scholar 

  5. J.R. Vig, A. Ballato, Frequency control devices, in Ultrasonic Instruments and Devices: Reference for Modern Instrumentation, Techniques and Technology, ed. by E. Papadakis (Academic Press, London, 1999)

    Google Scholar 

  6. D. Damjanovic, Rep. Prog. Phys. 61, 1267 (1998)

    Article  ADS  Google Scholar 

  7. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  Google Scholar 

  8. E. Holleinstein, M. Davis, D. Damjanovic, N. Setter, Appl. Phys. Lett. 87, 182905 (2005)

    Article  ADS  Google Scholar 

  9. Y. J Dai, X.W. Zhang, K.P. Chen, Appl. Phys. Lett. 94, 042905 (2009)

    Article  ADS  Google Scholar 

  10. M. Kosec, B. Malic, A. Bencan, T. Rojac, KNN-based piezoelectric ceramics, in Piezoelectric and Acoustic Materials for Transducer Applications, ed. by A. Safari, E.K. Akdogan (Springer, New York, 2008)

    Google Scholar 

  11. S.J. Zhang, R. Xia, T. Shrout, Appl. Phys. Lett. 91, 132913 (2007)

    Article  ADS  Google Scholar 

  12. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849 (2004)

    Article  ADS  Google Scholar 

  13. D.W. Baker, P.A. Thomas, N. Zhang, A.M. Glazer, Acta Crystallogr., B Struct. Crystallogr. Cryst. Chem. 65, 22 (2009)

    Article  Google Scholar 

  14. N. Klein, E. Hollenstein, D. Damjanovic, H.J. Trodahl, N. Setter, M. Kuball, J. Appl. Phys. 102, 014112 (2007)

    Article  ADS  Google Scholar 

  15. D. Lin, K.W. Kwok, H.L.W. Chan, Appl. Phys. A 91, 167 (2008)

    Article  ADS  Google Scholar 

  16. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  ADS  Google Scholar 

  17. Y.J. Dai, X.W. Zhang, G.Y. Zhou, Appl. Phys. Lett. 90, 362903 (2007)

    Google Scholar 

  18. H. Du, W. Zhou, F. Lou, D. Zhu, Sh. Qu, Z. Pei, J. Appl. Phys. 105, 124104 (2009)

    Article  ADS  Google Scholar 

  19. H.-Y. Park, K.-H. Cho, D.-S. Paik, S. Nahma, H.-G. Lee, D.-H. Kim, J. Appl. Phys. 102, 124101 (2007)

    Article  ADS  Google Scholar 

  20. Y. Chang, Z. Yang, L. Wei, B. Liu, Mater. Sci. Eng. A 437, 301 (2006)

    Article  Google Scholar 

  21. J. Portelles, I. González, J. Mater. Sci. Lett. 12, 1871 (1993)

    Article  Google Scholar 

  22. J.A. Luna-López, J. Portelles, O. Raymond, J.M. Siqueiros, Mater. Chem. Phys. 118, 341 (2009)

    Article  Google Scholar 

  23. R.D. Shannon, Acta Crystallogr. A, Found. Crystallogr. 32, 751 (1976)

    Article  ADS  Google Scholar 

  24. J. Rodríguez-Carvajal, FullProf Suite Program. Institut Laue-Langevin, Grenoble, France. http://www.ill.eu/sites/fullprof/index.html

  25. K. Uchino, S. Nomura, L.E. Cross, S.J. Tang, R.E. Newman, J. Appl. Phys. 51, 1142 (1980)

    Article  ADS  Google Scholar 

  26. Y. Guo, K. Kamimoto, H. Ohsaro, Solid State Commun. 129, 2792 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Project PAPIME PE100409/ ‘Programa México, Centroamérica y el Caribe para el avance de la Ciencia, la Tecnología y la Innovación, CONACYT-ICTP-SMF’. To Project DGAPA-PAPIIT-UNAM No. IN112610, CONACYT projects 27633 and 166286and to E. Apariciofor theXRD measurements. C. Ostos thanks the ICyTDF-CLAF for a postdoctoral fellowship (2011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Siqueiros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuentes, J., Portelles, J., Pérez, A. et al. Structural and dielectric properties of La- and Ti-modified K0.5Na0.5NbO3 ceramics. Appl. Phys. A 107, 733–738 (2012). https://doi.org/10.1007/s00339-012-6793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-012-6793-x

Keywords

Navigation