Skip to main content
Log in

Stability and electronic states of NC3 nanoribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We apply the first-principles method to investigate the electronic and structural properties NC3 nanoribbons. The calculation results show that the stability does not depend on the ribbon width but depends on the edge type, where armchair structures are the more stable ones. The present nanostructures always have a metallic behavior. Such feature is connected with the spatial arrangement of N and C atoms, where the conducting behavior is associated to the contribution of p z -like orbitals of carbon atoms and the presence of a carbon stripe. In addition, no net magnetization is observed for the calculated structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature (London) 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  3. X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Europhys. Lett. 28, 335 (1994)

    Article  ADS  Google Scholar 

  4. A.R. Badzian, T. Niemyski, S. Appenheimer, E. Olkusnik, in Proceedings of the Intl. Conf. on Chemical Vapor Deposition, vol. 3, ed. by F.A. Glaski (American Nuclear Society, Hinsdale, 1972)

    Google Scholar 

  5. O. Sasaki, Phys. Rev. Lett. 83, 2406 (1999)

    Article  ADS  Google Scholar 

  6. D. Golberg, P. Dorozhkin, Y. Bando, M. Hasegawa, Z.-C. Dong, Chem. Phys. Lett. 359, 220 (2002)

    Article  ADS  Google Scholar 

  7. V.D. Blank, A. Seepujak, E.V. Polyakov, D.V. Batov, B.A. Kulnitskiy, Yu.N. Parkhomenko, E.A. Skryleva, U. Bangert, A. Gutierrez-Sosa, A.J. Harvey, Carbon 47, 3167 (2009)

    Article  Google Scholar 

  8. Y.W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  9. Z. Zhang, W. Guo, Phys. Rev. B 77, 075403 (2008)

    Article  ADS  Google Scholar 

  10. C.H. Park, S.G. Louie, Nano Lett. 8, 2200 (2008)

    Article  ADS  Google Scholar 

  11. Y. Ding, Y. Wang, J. Ni, Applied Phys. Lett. A 94, 073111 (2009)

    Article  ADS  Google Scholar 

  12. K.I. Sasaki, S. Murakami, R. Saito, J. Phys. Soc. Jpn. 75, 074713 (2006)

    Article  ADS  Google Scholar 

  13. D.A. Abanin, P.A. Lee, L.S. Levitov, Phys. Rev. Lett. 96, 176803 (2006)

    Article  ADS  Google Scholar 

  14. T.H. Luo, A.P. Iyenga, H.A. Fertig, Phys. Rev. B 80, 165310 (2009)

    Article  ADS  Google Scholar 

  15. Y. Zhu, A.L. Higginbothan, J.M. Tour, Chem. Mater. 21, 5284 (2009)

    Article  Google Scholar 

  16. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  17. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  18. C. Berger, Z. Song, Xu. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006)

    Article  ADS  Google Scholar 

  19. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, J. Phys. Chem. B 108, 19912 (2004)

    Article  Google Scholar 

  20. Y.W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  21. Y. Ding, X. Yang, J. Ni, Appl. Phys. Lett. 93, 043107 (2008)

    Article  ADS  Google Scholar 

  22. L. Sun, Y. Li, Z. Li, Q. Li, Z. Zhou, Z. Chen, J. Yang, J.G. Hou, J. Chem. Phys. 129, 174114 (2008)

    Article  ADS  Google Scholar 

  23. A.R. Botello-Mendez, F. Lopez-Uras, M. Terrones, H. Terrones, Nano Lett. 8, 1562 (2008)

    Article  ADS  Google Scholar 

  24. P. Ghosh, M. Tanemura, T. Soja, M. Zamri, T. Jimbo, Solid State Commun. 147, 15 (2008)

    Article  ADS  Google Scholar 

  25. D. Jana, A. Chakraborti, L.C. Chen, C.W. Wei, K.H. Chen, Nanotechnology 20, 175701 (2009)

    Article  ADS  Google Scholar 

  26. X.H. Zheng, X.L. Wang, T.A. Abtew, Z. Zeng, J. Phys. Chem. 114, 4190 (2010)

    Google Scholar 

  27. S. Yu, W. Zheng, C. Wang, Q. Jiang, ACS Nano 4, 7619 (2010)

    Article  Google Scholar 

  28. W. Kohn, J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  29. D. Sanchez-Portal, P. Ordejon, E. Artacho, J.M. Soler, Int. J. Quant. Chem. 65, 453 (1997)

    Article  Google Scholar 

  30. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

    Article  ADS  Google Scholar 

  31. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  32. M.S.C. Mazzoni, R.W. Nunes, S. Azevedo, H. Chacham, Phys. Rev. B 73, 073108 (2006)

    Article  ADS  Google Scholar 

  33. S. Azevedo, R. de Paiva, Europhys. Lett. 75, 126 (2006)

    Article  ADS  Google Scholar 

  34. S. Azevedo, R. de Paiva, J. Phys., Condens. Matter 18, 10871 (2006)

    Article  ADS  Google Scholar 

  35. S. Azevedo, M.S.C. Mazzoni, R.W. Nunes, H. Chacham, Phys. Rev. B 70, 205412 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azevedo, S., Machado, M. & Kaschny, J.R. Stability and electronic states of NC3 nanoribbons. Appl. Phys. A 104, 55–60 (2011). https://doi.org/10.1007/s00339-011-6445-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-011-6445-6

Keywords

Navigation